Skip to main content

A set of pytorch implementations for space filling curve using OpenAI Triton

Project description

space-filling-pytorch

A set of GPU-optimized space-filling-curve algorithms (e.g., Hilbert, Z-order) implemented in PyTorch and OpenAI Triton. These algorithms are more than 30 times faster than typical PyTorch-based implementations due to kernel fusion. This library is particularly useful for handling point clouds in PyTorch deep learning networks, such as PointTransformerV3.

Usage

import torch
from space_filling_pytorch import hilbert_encode, z_order_encode

batch_size = 2
num_points = 16
xyz = torch.rand(batch_size, num_points, 3, device="cuda") * 2 - 1  # value range must be [-1, 1]

# Hilbert Curve with no transpose (xyz order)
hilbert_encode(xyz, space_size=1024, x_offset=0, y_offset=1, z_offset=2)
>>> tensor([[ 27008646,  174416382,   99184467,  545318174, 1014259428,  947817691,
             974147274,  465746813,  590435514,  122722004,  897101603,  535449979,
             520237253,  446529249,  197013177,  254906709],
            [551194570,  532868556,  350803712,  922818975,  602215252,  253605249,
             600868136,  557531360,  625006013,  678917039,  957204642,  187281814,
             621257029,  989726818,  615092084,  909388620]], device='cuda:0')

# Hilbert Curve with transpose (zyx order)
hilbert_encode(xyz, space_size=1024, x_offset=2, y_offset=1, z_offset=0)
>>> tensor([[  27203104,  943467886,   90203125,  276882718,  136738518,  171280879,
              211356654,  466326141,  322000058,   51565506,  933932599,  422793567,
              424300741,  480083681, 1001350699, 1026735333],
            [ 282759114,  433308876,  619239168,  903500185,  333779796, 1037547831,
              332432680,  289095904,  356570557,  687821371,  223340726, 1006162308,
              352821573,  217999680,  346656628,  921071576]], device='cuda:0')

# Z-Order with no transpose (xyz order)
z_order_encode(xyz, space_size=1024, x_offset=0, y_offset=1, z_offset=2)
>>> tensor([[ 44778821, 226778406, 121328308, 815839782, 539433139, 631067087,
             599439830, 397986105, 848144099,  29398278, 693723698, 344726626,
             335653660, 331813849, 210352353, 182524594],
            [819692704, 349517781, 507224630, 750011964, 841590237, 175939993,
             840220003, 882290987, 935427276, 948966804, 665137179, 203507248,
             923330332, 596839195, 871191299, 758935523]], device='cuda:0')

Installation

To install the library, use the following command:

pip install git+https://github.com/Kitsunetic/space-filling-pytorch.git

Further Improvements

Currently, this library works only with 3D point cloud with float32 dtype because these are all of what I needed. If you need help, such as another input/output format or decoding, please contact me through issues or email.

  • Performance comparison with this library to existing implementations.
  • Support for non-contiguous input tensors.
  • Implement additional algorithms such as Peano, Moore, Gosper Codes.
  • Extent algorithms for more general inputs (not just 3D point cloud, but also 1D, 2D, 4D cases).
  • Kernel fusion of space filling curve code generation / ordering / gathering processes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

space_filling_pytorch-0.0.2.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

space_filling_pytorch-0.0.2-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file space_filling_pytorch-0.0.2.tar.gz.

File metadata

  • Download URL: space_filling_pytorch-0.0.2.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for space_filling_pytorch-0.0.2.tar.gz
Algorithm Hash digest
SHA256 45072f3ff8c3382d82bae8c4be1a9d9c1103f58e9a743bab173997cc4bc12fe7
MD5 1068d72546402e3dabd1823554a86ccc
BLAKE2b-256 561296998c2658d99988799d7fa0a1f88bcc8921e1e2db0be35690a4c941299e

See more details on using hashes here.

File details

Details for the file space_filling_pytorch-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for space_filling_pytorch-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d7dfc78f42a07a27f45b57e99f534e6ce4351332987b7f6d9d872240ca51dace
MD5 d8dc50d163ec0cd416cc699c4eab219d
BLAKE2b-256 2a9dc2995307f189fab06a35ce313056223b3539eb1cdf49f8f3d33804c32070

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page