Skip to main content

A set of pytorch implementations for space filling curve using OpenAI Triton

Project description

space-filling-pytorch

A set of GPU-optimized space-filling-curve algorithms (e.g., Hilbert, Z-order) implemented in PyTorch and OpenAI Triton. These algorithms are more than 30 times faster than typical PyTorch-based implementations due to kernel fusion. This library is particularly useful for handling point clouds in PyTorch deep learning networks, such as PointTransformerV3.

Usage

import torch
from space_filling_pytorch import hilbert_encode, z_order_encode

batch_size = 2
num_points = 16
xyz = torch.rand(batch_size, num_points, 3, device="cuda") * 2 - 1  # value range must be [-1, 1]

# Hilbert Curve with no transpose (xyz order)
hilbert_encode(xyz, space_size=1024, x_offset=0, y_offset=1, z_offset=2)
>>> tensor([[ 27008646,  174416382,   99184467,  545318174, 1014259428,  947817691,
             974147274,  465746813,  590435514,  122722004,  897101603,  535449979,
             520237253,  446529249,  197013177,  254906709],
            [551194570,  532868556,  350803712,  922818975,  602215252,  253605249,
             600868136,  557531360,  625006013,  678917039,  957204642,  187281814,
             621257029,  989726818,  615092084,  909388620]], device='cuda:0')

# Hilbert Curve with transpose (zyx order)
hilbert_encode(xyz, space_size=1024, x_offset=2, y_offset=1, z_offset=0)
>>> tensor([[  27203104,  943467886,   90203125,  276882718,  136738518,  171280879,
              211356654,  466326141,  322000058,   51565506,  933932599,  422793567,
              424300741,  480083681, 1001350699, 1026735333],
            [ 282759114,  433308876,  619239168,  903500185,  333779796, 1037547831,
              332432680,  289095904,  356570557,  687821371,  223340726, 1006162308,
              352821573,  217999680,  346656628,  921071576]], device='cuda:0')

# Z-Order with no transpose (xyz order)
z_order_encode(xyz, space_size=1024, x_offset=0, y_offset=1, z_offset=2)
>>> tensor([[ 44778821, 226778406, 121328308, 815839782, 539433139, 631067087,
             599439830, 397986105, 848144099,  29398278, 693723698, 344726626,
             335653660, 331813849, 210352353, 182524594],
            [819692704, 349517781, 507224630, 750011964, 841590237, 175939993,
             840220003, 882290987, 935427276, 948966804, 665137179, 203507248,
             923330332, 596839195, 871191299, 758935523]], device='cuda:0')

Installation

To install the library, use the following command:

pip install git+https://github.com/Kitsunetic/space-filling-pytorch.git

Further Improvements

Currently, this library works only with 3D point cloud with float32 dtype because these are all of what I needed. If you need help, such as another input/output format or decoding, please contact me through issues or email.

  • Performance comparison with this library to existing implementations.
  • Support for non-contiguous input tensors.
  • Implement additional algorithms such as Peano, Moore, Gosper Codes.
  • Extent algorithms for more general inputs (not just 3D point cloud, but also 1D, 2D, 4D cases).
  • Kernel fusion of space filling curve code generation / ordering / gathering processes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

space_filling_pytorch-0.0.3.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

space_filling_pytorch-0.0.3-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file space_filling_pytorch-0.0.3.tar.gz.

File metadata

  • Download URL: space_filling_pytorch-0.0.3.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for space_filling_pytorch-0.0.3.tar.gz
Algorithm Hash digest
SHA256 0a8e91eea0cb5556dd42c5d32be18396e985124a7edd0b0f902f8d5119aff10b
MD5 6863a219c18fa1355de95f6a8a60cd29
BLAKE2b-256 b321abbc429cce84700a64dc7fab70fc3e48f5de9c12fe7ed2d4d6182926c69f

See more details on using hashes here.

File details

Details for the file space_filling_pytorch-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for space_filling_pytorch-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 11c64803ddc38ebab14dce3466c2bd678a1f94afc52f1b19ef35a054445f988b
MD5 58202839269bf19ba888772e8a307501
BLAKE2b-256 c6b11ddda793cd31f1efc4af685eae778f66a05aae6e354d3821c3542fa72788

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page