Skip to main content

Spacell Package

Project description

Introduction to SpaCell

  • SpaCell has been developed for analysing spatial transcriptomics (ST) data, which include imaging data of tissue sections and RNA expression data across the tissue sections. The ST data add a novel spatial dimension to the traditional gene expression data, which derive from dissociated cells. The ST data also add molecular information to a typical histological image. Spacell is desinged to integrates the two histopathological imaging and sequencing fields, with the ultimate aim to discover novel biology and to improve histopathological diagnosis.

  • SpaCell implements (deep) neural network (NN) models likea multi-input and multi-output autoencoder, transfer learning with or without fine tuning and residual and separable convolutional NN architectures to identify cell types or to predict disease stages. The NN integrates millions of pixel intensity values with thousands of gene expression measurements from spatially-barcoded spots in a tissue. Prior to model training, SpaCell enables users for implement a comprehensive data preprocessing workflow to filter, combine, and normalise images and gene expression matrices.

Installation

  1. Requirements:
[python 3.6+]
[TensorFlow 1.4.0]
[scikit-learn 0.18]
[keras 2.2.4]
[seaborn 0.9.0]
[opencv 4.1.1]
[pandas 0.25.0]
[pillow 6.1.0]
[python-spams 2.6.1]
[staintools 2.1.2]
...
  1. Installation:

2.1 Build from sources

To meet the requirements, we recommend user to use either (1) conda environment:

# Download SapCell from GitHub and install all required packages:
git clone https://github.com/BiomedicalMachineLearning/Spacell.git
cd Spacell
conda env create -f requirements.yml
# To activate environment:
conda activate SpaCell
# To exit environment:
conda deactivate

Or (2) Docker container:

# Downlaod Docker image
docker pull biomedicalmachinelearning/spacell:latest
# Run Docker container
docker run \
-it \
-v /path/to/your/data:/home/Spacell/dataset/ \ # mount your local data directory to container
biomedicalmachinelearning/spacell:latest

2.2 Install from PyPi

pip install SpaCell

Build Status

Build Type Status Artifacts
Ubuntu Linux 18.04 Build Status Conda, Docker, PyPI
Centos Linux 7 Build Status Conda, Docker, PyPI
MacOS(Mojave) Build Status Conda, Docker, PyPI
MacOS(Catalina) Build Status Conda, Docker, PyPI
Windows 10 Build Status Docker, PyPI

* python-spams 2.6.1, a dependence of staintools 2.1.2, is currently not avaliable on Windows 10 platform. We recommend Windows 10 user to use Docker container instead of Conda environment.

Usage

Configurations

config.py

  1. Specify the dataset directory and output directory.
  2. Specify model parameters.

1. Image Preprocessing

python image_normalization.py

2. Count Matrix PreProcessing

python count_matrix_normalization.py

3. Generate paired image and gene count training dataset

python dataset_management.py

4. Classification

python spacell_classification.py

5. Clustering

python spacell_clustering.py -i /path/to/one/image.jpg -l /path/to/iamge/tiles/ -c /path/to/count/matrix/ -e 100 -k 2 -o /path/to/output/

  • -e is number of training epochs
  • -k is number of expected clusters

6. Clustering Validation and Quantification

python spacell_validation.py -d /path/to/data -a annotation.png -w wsi.jpeg -m affine_tranformation_matrix.txt -o output_folder -k clustering_predictions.tsv -c annotation_colour_range

  • -c is annotation colour range thresholds - blue_low green_low red_low blue_upper green_upper red_low
  • -t indicates that annotations are not closed paths, so spacell with try to close the paths
  • -f downscale factor if the input whole slide image has already been downscaled
  • -s spot size, optional, usually set automatically

Results

Classification of ALS disease stages

Clustering for finding prostate cancer region

Clustering for finding inflamed stromal

Clustering for anatomical regions in mouse olfactory bulb (High density ST dataset)

Dataset

For evaluating the algorithm, ALS (Amyotrophic lateral sclerosis) dataset, prostate cancer dataset, and a high density spatial transcriptomic HDST dataset were used.

Citing Spacell

If you find Spacell useful in your research, please consider citing:

Xiao Tan, Andrew T Su, Minh Tran, Quan Nguyen (2019). SpaCell: integrating tissue morphology and spatial gene expression to predict disease cells. (Manuscript is currently under-review)

The team

The software is under active development by the Biomedical Machine Learning Lab at the Institute for Molecular Bioscience (IMB, University of Queensland).

Please contact Dr Quan Nguyen (quan.nguyen@uq.edu.au), Andrew Su (a.su@uq.edu.au), and Xiao Tan (xiao.tan@uq.edu.au) for issues, suggestions, and we very welcome collaboration opportunities.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Spacell-1.0.1.tar.gz (28.3 kB view details)

Uploaded Source

Built Distribution

Spacell-1.0.1-py3-none-any.whl (29.9 kB view details)

Uploaded Python 3

File details

Details for the file Spacell-1.0.1.tar.gz.

File metadata

  • Download URL: Spacell-1.0.1.tar.gz
  • Upload date:
  • Size: 28.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for Spacell-1.0.1.tar.gz
Algorithm Hash digest
SHA256 73b5d314ac09db72ae3129f86aa82bae47873bb445a1406de384441ef35a7383
MD5 031e8dbcf85cc0e2a5b01fc2c95e4170
BLAKE2b-256 86eccd4a62506841d952983131dc725df8f04e383cb646d28ce47b1119137ea2

See more details on using hashes here.

File details

Details for the file Spacell-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: Spacell-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 29.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for Spacell-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 924243506167a1fbb3bbdea3d4b4c4a8aa07041fff2c4a73695fb7d7cfdef01a
MD5 68d61f4b2a61294ad1dcfffee7368c19
BLAKE2b-256 ecf5b562d79fe974bd0024fe8604da42df71de63f6f89679f96fa32e2d56b346

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page