Skip to main content

Location date features as dataframe

Project description

SpaceTimePandas

Location and date features from a bunch of api sources to Pandas. Repository hosted on GitHub.

icon

pip install SpaceTimePandas

Temporal features

>>> import datetime
>>> from stpd.event import Holiday
>>> us_holidays = Holiday(years=[2021, 2022, 2023], country='US')
>>> us_holidays(datetime.date(2022, 1, 17))
{
    'us_holiday_days_since_last': 0,
    'us_holiday_days_to_next': 35
}
>>> from datetime import datetime
>>> from stpd.fourier import Fourier
>>> Fourier()(datetime(2020, 1, 1))
{
    'week_of_year_sine_phase_0': 0.1198805403706726,
    ...
    'week_of_year_sine_phase_52': 0.08569582503232778,
    'week_of_year_cos_phase_0': 0.9927883238840168,
    ...
    'minute_of_hour_cos_phase_59': 0.9945218953682733
}
>>> from stpd.nytsentiment import NYTimesSentiment
>>> from datetime import date
>>> nytsentiment = NYTimesSentiment(api_key='<GET-ONE-FROM-NYT-DEVELOPERS-API>')
>>> nytsentiment(date(2022, 6, 1))
{'negative': 0.04179099574685097, 'positive': 0.9582089781761169}

Location features

>>> from stpd.openstreetmap import OpenStreetMap
>>> osm=OpenStreetMap()('Toronto Ontario')
[nominatim] downloading data: search
{
    'count_natural=tree': 719, 
    'count_natural=water': 15, 
    'count_building=yes': 1151, 
    'count_building=house': 39, 
    'count_amenity=parking': 148, 
    'count_amenity=restaurant': 327, 
    'count_service=driveway': 77
}
>>> from stpd.openrouteservice import OpenRouteServicePathFeatures
>>> ors = OpenRouteServicePathFeatures(api_key='<GET-ONE-FROM-OPENROUTESERVICE>')
>>> ors(location_strs=['toronto ontario', 'hamilton ontario'])
{
    'distance': 67828.8,
    'duration': 3125.3
}
>>> from stpd.openrouteservice import OpenRouteServiceLocationFeatures
>>> ors = OpenRouteServiceLocationFeatures(api_key='<GET-ONE-FROM-OPENROUTESERVICE>')
>>> ors(location_str='toronto ontario')
{
    'range_seconds_100.0_area': 553988.44, 
    'range_seconds_100.0_reachfactor': 0.0229, 
    'range_seconds_100.0_total_pop': 1953.0, 
    'range_seconds_200.0_area': 3674992.8, 
    ...
    'range_seconds_1000.0_total_pop': 942521.0
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SpaceTimePandas-0.3.3.tar.gz (28.5 kB view details)

Uploaded Source

Built Distribution

SpaceTimePandas-0.3.3-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file SpaceTimePandas-0.3.3.tar.gz.

File metadata

  • Download URL: SpaceTimePandas-0.3.3.tar.gz
  • Upload date:
  • Size: 28.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for SpaceTimePandas-0.3.3.tar.gz
Algorithm Hash digest
SHA256 918c2eaa2924ee89d9d0eb686f5a26c9204b10816baf84061c805fd982ab323d
MD5 ceaea2dc9a56be9aa3ea108056099912
BLAKE2b-256 e2a6c00b063411792363681fbdbff565fc533f11958bb5dc03bb9ade92be7257

See more details on using hashes here.

File details

Details for the file SpaceTimePandas-0.3.3-py3-none-any.whl.

File metadata

File hashes

Hashes for SpaceTimePandas-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 75d83595f8f81ab23c703dce7d0cd9b6b8abe50f2bba48a7ac0fcf5595daab30
MD5 04d8f8ab5e58ef930f637133aca0f498
BLAKE2b-256 66d65382dbf81dcf823dd133e16304e62d2c9dece8b27baa978dfc21329992aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page