Skip to main content

Cutting-edge experimental spaCy components and features

Project description

spacy-experimental: Cutting-edge experimental spaCy components and features

This package includes experimental components and features for spaCy v3.x, for example model architectures, pipeline components and utilities.

tests pypi Version

Installation

Install with pip:

python -m pip install -U pip setuptools wheel
python -m pip install spacy-experimental

Using spacy-experimental

Components and features may be modified or removed in any release, so always specify the exact version as a package requirement if you're experimenting with a particular component, e.g.:

spacy-experimental==0.147.0

Then you can add the experimental components to your config or import from spacy_experimental:

[components.experimental_char_ner_tokenizer]
factory = "experimental_char_ner_tokenizer"

Components

Trainable character-based tokenizers

Two trainable tokenizers represent tokenization as a sequence tagging problem over individual characters and use the existing spaCy tagger and NER architectures to perform the tagging.

In the spaCy pipeline, a simple "pretokenizer" is applied as the pipeline tokenizer to split each doc into individual characters and the trainable tokenizer is a pipeline component that retokenizes the doc. The pretokenizer needs to be configured manually in the config or with spacy.blank():

nlp = spacy.blank(
    "en",
    config={
        "nlp": {
            "tokenizer": {"@tokenizers": "spacy-experimental.char_pretokenizer.v1"}
        }
    },
)

The two tokenizers currently reset any existing tag or entity annotation respectively in the process of retokenizing.

Character-based tagger tokenizer

In the tagger version experimental_char_tagger_tokenizer, the tagging problem is represented internally with character-level tags for token start (T), token internal (I), and outside a token (O). This representation comes from Elephant: Sequence Labeling for Word and Sentence Segmentation (Evang et al., 2013).

This is a sentence.
TIIIOTIOTOTIIIIIIIT

With the option annotate_sents, S replaces T for the first token in each sentence and the component predicts both token and sentence boundaries.

This is a sentence.
SIIIOTIOTOTIIIIIIIT

A config excerpt for experimental_char_tagger_tokenizer:

[nlp]
pipeline = ["experimental_char_tagger_tokenizer"]
tokenizer = {"@tokenizers":"spacy-experimental.char_pretokenizer.v1"}

[components]

[components.experimental_char_tagger_tokenizer]
factory = "experimental_char_tagger_tokenizer"
annotate_sents = true
scorer = {"@scorers":"spacy-experimental.tokenizer_senter_scorer.v1"}

[components.experimental_char_tagger_tokenizer.model]
@architectures = "spacy.Tagger.v1"
nO = null

[components.experimental_char_tagger_tokenizer.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"

[components.experimental_char_tagger_tokenizer.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 128
attrs = ["ORTH","LOWER","IS_DIGIT","IS_ALPHA","IS_SPACE","IS_PUNCT"]
rows = [1000,500,50,50,50,50]
include_static_vectors = false

[components.experimental_char_tagger_tokenizer.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 128
depth = 4
window_size = 4
maxout_pieces = 2

Character-based NER tokenizer

In the NER version, each character in a token is part of an entity:

T	B-TOKEN
h	I-TOKEN
i	I-TOKEN
s	I-TOKEN
 	O
i	B-TOKEN
s	I-TOKEN
	O
a	B-TOKEN
 	O
s	B-TOKEN
e	I-TOKEN
n	I-TOKEN
t	I-TOKEN
e	I-TOKEN
n	I-TOKEN
c	I-TOKEN
e	I-TOKEN
.	B-TOKEN

A config excerpt for experimental_char_ner_tokenizer:

[nlp]
pipeline = ["experimental_char_ner_tokenizer"]
tokenizer = {"@tokenizers":"spacy-experimental.char_pretokenizer.v1"}

[components]

[components.experimental_char_ner_tokenizer]
factory = "experimental_char_ner_tokenizer"
scorer = {"@scorers":"spacy-experimental.tokenizer_scorer.v1"}

[components.experimental_char_ner_tokenizer.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null

[components.experimental_char_ner_tokenizer.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"

[components.experimental_char_ner_tokenizer.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 128
attrs = ["ORTH","LOWER","IS_DIGIT","IS_ALPHA","IS_SPACE","IS_PUNCT"]
rows = [1000,500,50,50,50,50]
include_static_vectors = false

[components.experimental_char_ner_tokenizer.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 128
depth = 4
window_size = 4
maxout_pieces = 2

The NER version does not currently support sentence boundaries, but it would be easy to extend using a B-SENT entity type.

Biaffine parser

A biaffine dependency parser, similar to that proposed in [Deep Biaffine Attention for Neural Dependency Parsing](Deep Biaffine Attention for Neural Dependency Parsing) (Dozat & Manning, 2016). The parser consists of two parts: an edge predicter and an edge labeler. For example:

[components.experimental_arc_predicter]
factory = "experimental_arc_predicter"

[components.experimental_arc_labeler]
factory = "experimental_arc_labeler"

The arc predicter requires that a previous component (such as senter) sets sentence boundaries during training. Therefore, such a component must be added to annotating_components:

[training]
annotating_components = ["senter"]

The biaffine parser sample project provides an example biaffine parser pipeline.

Span Finder

The SpanFinder is a new experimental component that identifies span boundaries by tagging potential start and end tokens. It's an ML approach to suggest candidate spans with higher precision.

SpanFinder uses the following parameters:

  • threshold: Probability threshold for predicted spans.
  • predicted_key: Name of the SpanGroup the predicted spans are saved to.
  • training_key: Name of the SpanGroup the training spans are read from.
  • max_length: Max length of the predicted spans. No limit when set to 0. Defaults to 0.
  • min_length: Min length of the predicted spans. No limit when set to 0. Defaults to 0.

Here is a config excerpt for the SpanFinder together with a SpanCategorizer:

[nlp]
lang = "en"
pipeline = ["tok2vec","span_finder","spancat"]
batch_size = 128
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}

[components]

[components.tok2vec]
factory = "tok2vec"

[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v1"

[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = ${components.tok2vec.model.encode.width}
attrs = ["ORTH", "SHAPE"]
rows = [5000, 2500]
include_static_vectors = false

[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 96
depth = 4
window_size = 1
maxout_pieces = 3

[components.span_finder]
factory = "experimental_span_finder"
threshold = 0.35
predicted_key = "span_candidates"
training_key = ${vars.spans_key}
min_length = 0
max_length = 0

[components.span_finder.scorer]
@scorers = "spacy-experimental.span_finder_scorer.v1"
predicted_key = ${components.span_finder.predicted_key}
training_key = ${vars.spans_key}

[components.span_finder.model]
@architectures = "spacy-experimental.SpanFinder.v1"

[components.span_finder.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO=2

[components.span_finder.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}

[components.spancat]
factory = "spancat"
max_positive = null
spans_key = ${vars.spans_key}
threshold = 0.5

[components.spancat.model]
@architectures = "spacy.SpanCategorizer.v1"

[components.spancat.model.reducer]
@layers = "spacy.mean_max_reducer.v1"
hidden_size = 128

[components.spancat.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = null
nI = null

[components.spancat.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}

[components.spancat.suggester]
@misc = "spacy-experimental.span_finder_suggester.v1"
predicted_key = ${components.span_finder.predicted_key}

This package includes a spaCy project which shows how to train and use the SpanFinder together with SpanCategorizer.

Coreference Components

The CoreferenceResolver and SpanResolver are designed to be used together to build a corerefence pipeline, which allows you to identify which spans in a document refer to the same thing. Each component also includes an architecture and scorer. For more details, see their pages in the main spaCy docs.

For an example of how to build a pipeline with the components, see the example coref project.

Architectures

None currently.

Other

Tokenizers

  • spacy-experimental.char_pretokenizer.v1: Tokenize a text into individual characters.

Scorers

  • spacy-experimental.tokenizer_scorer.v1: Score tokenization.
  • spacy-experimental.tokenizer_senter_scorer.v1: Score tokenization and sentence segmentation.

Misc

Suggester functions for spancat:

Subtree suggester: Uses dependency annotation to suggest tokens with their syntactic descendants.

  • spacy-experimental.subtree_suggester.v1
  • spacy-experimental.ngram_subtree_suggester.v1

Chunk suggester: Suggests noun chunks using the noun chunk iterator, which requires POS and dependency annotation.

  • spacy-experimental.chunk_suggester.v1
  • spacy-experimental.ngram_chunk_suggester.v1

Sentence suggester: Uses sentence boundaries to suggest sentence spans.

  • spacy-experimental.sentence_suggester.v1
  • spacy-experimental.ngram_sentence_suggester.v1

The package also contains a merge_suggesters function which can be used to combine suggestions from multiple suggesters.

Here are two config excerpts for using the subtree suggester with and without the ngram functionality:

[components.spancat.suggester]
@misc = "spacy-experimental.subtree_suggester.v1"
[components.spancat.suggester]
@misc = "spacy-experimental.ngram_subtree_suggester.v1"
sizes = [1, 2, 3]

Note that all the suggester functions are registered in @misc.

Bug reports and issues

Please report bugs in the spaCy issue tracker or open a new thread on the discussion board for other issues.

Older documentation

See the READMEs in earlier tagged versions for details about components in earlier releases.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spacy-experimental-0.6.4.tar.gz (59.3 kB view details)

Uploaded Source

Built Distributions

spacy_experimental-0.6.4-cp311-cp311-win_amd64.whl (562.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

spacy_experimental-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (667.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

spacy_experimental-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (626.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

spacy_experimental-0.6.4-cp311-cp311-macosx_11_0_arm64.whl (689.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

spacy_experimental-0.6.4-cp311-cp311-macosx_10_9_x86_64.whl (720.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

spacy_experimental-0.6.4-cp310-cp310-win_amd64.whl (561.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

spacy_experimental-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (669.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spacy_experimental-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (627.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

spacy_experimental-0.6.4-cp310-cp310-macosx_11_0_arm64.whl (703.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

spacy_experimental-0.6.4-cp310-cp310-macosx_10_9_x86_64.whl (739.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

spacy_experimental-0.6.4-cp39-cp39-win_amd64.whl (573.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

spacy_experimental-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (674.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spacy_experimental-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (634.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

spacy_experimental-0.6.4-cp39-cp39-macosx_11_0_arm64.whl (707.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

spacy_experimental-0.6.4-cp39-cp39-macosx_10_9_x86_64.whl (742.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

spacy_experimental-0.6.4-cp38-cp38-win_amd64.whl (574.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

spacy_experimental-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (689.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spacy_experimental-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (645.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

spacy_experimental-0.6.4-cp38-cp38-macosx_11_0_arm64.whl (689.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

spacy_experimental-0.6.4-cp38-cp38-macosx_10_9_x86_64.whl (719.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

spacy_experimental-0.6.4-cp37-cp37m-win_amd64.whl (561.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

spacy_experimental-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (664.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

spacy_experimental-0.6.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (628.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

spacy_experimental-0.6.4-cp37-cp37m-macosx_10_9_x86_64.whl (707.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

spacy_experimental-0.6.4-cp36-cp36m-win_amd64.whl (620.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

spacy_experimental-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (663.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

spacy_experimental-0.6.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (626.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

spacy_experimental-0.6.4-cp36-cp36m-macosx_10_9_x86_64.whl (705.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file spacy-experimental-0.6.4.tar.gz.

File metadata

  • Download URL: spacy-experimental-0.6.4.tar.gz
  • Upload date:
  • Size: 59.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for spacy-experimental-0.6.4.tar.gz
Algorithm Hash digest
SHA256 58a4ebe2697405ec2640c21299d91c16e4123ee5727877756bb01d91913bf14c
MD5 2ccaa38c23455e7a5690099a7b4e44a9
BLAKE2b-256 1f90dc46d42d905a1c76e5d1928338578350c716450242cf303e275ed5873313

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bb98ddb7d660ead8efc68e839513cfcca0fdbb315badfb92caf522234641f132
MD5 94d542a97a3bf741d0757f0eae92e561
BLAKE2b-256 0efd306b5f250d3c51f003c71037ab0ab8b4ec58f9e42f5639a7fcc86039b7f7

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e3b9ea485c96baa36b7cd7b957fa17ad50e9403730d218d182b4470952ac1be
MD5 738c2ed9ea29be65ade0d02a085b6544
BLAKE2b-256 fa33cfd1753a69e481d1480b0507974d4a937bbf0e929c80dc8f35ca96a2a988

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c54d734b1804dd869264a8ec58b10b25ea98af8b65db82a55f71f6dff1fd6275
MD5 330e30564aa3663e28cafa3119b25373
BLAKE2b-256 cde82f81852f465c827e9e68d0d73f309b19c0ae368a71a885defb962359b519

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb923f5a45af5a834fa15866bb4d5afea387deca35fe69ac37b16b93c1659ccb
MD5 281c6da4b17e799781597ce01c337aaf
BLAKE2b-256 56155dfa5f7c671ae3c2e1069572143517571aa6e172fb6c8e82f71f138d98c7

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6932c233e6f33f77485760a68cf6944bc03ce1fa0f36cc00bedae4267630b269
MD5 5e54eb71884aa79b81118f6d13940a4c
BLAKE2b-256 dd383f74c6267222b43ab49abc5593f2c6a993dee6687104bdf9813c8b19466d

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2943997cdc20803bb1ec619c5f076416063bc994e59786d1990296b65adeed90
MD5 e83d98e71adec4888c6a467008725200
BLAKE2b-256 8a8b6c8d4ca03f3cddd74a3c017e80e51099382af3ae6493cd3e1f72364988a1

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59a5e2668b1159be631244fee8d21549e7dee66a252266a77a4345ad61990559
MD5 ffd36831ec7962df1e5ee8cc9a3e3c1f
BLAKE2b-256 fff79a7933b8b082b1625b22d31da8aaad9ade82f7c60dd7a3272c5921be7796

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c25b0ef8138f3b843c1ec08be0614aa6c5c202b19845e435f95a936d2c7e092a
MD5 9bfaf0ee5fae1a487d1fc99ac9281ee7
BLAKE2b-256 5a9659850a48598ed62bc55ac3c427f300dd893bf75f50914817ce6ece1c5f98

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b042045e5ceff95998e54941592591fa2344f0f4138c29fef91aba0473d3587
MD5 69ec43738948b463249d60b946254d1d
BLAKE2b-256 95a33db4b0d53a9fa7e357b49ffe6bf3a4c89a72e468153f575eeca862423739

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b2e8e0634b8591dfe61d5c37b3a4637be9e1744565efc7e89a3e805e212fd89
MD5 98c55e56ca4574be9674a1dc0d0e8aab
BLAKE2b-256 785ef2dda45f2e788902abc134bbb23d4f9c78c8c2a97d55dc6600f755b53070

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cd3bf159365c5dae0c0e2162ca02012ba8ede76d6ecf788f1543fd1c44cdf60c
MD5 42db8baea9f1d720a50f88316cb07ba7
BLAKE2b-256 e9be833216e598ecc0b83b442defaef2ef21faf3ccb258fbe52bc7607cd9ad5a

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14ec4efde588bd02afd1e1d44164d1f0ba4be894dbd9da657db6a8ff5c62247d
MD5 8ab81bd34e17aaac95248f7dbc1bded7
BLAKE2b-256 2b7ef87e8bc8bffb644ae6fad6da40c3b817e177b68df7917b23ae10ad825c25

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9fbe8e715d79742ad3182d7ba672d2794bcaca6f3c6079e172aa366e2a410fb0
MD5 3dff6ec0ddf8bcdd2476bd0dd1d4b5be
BLAKE2b-256 00454cad2ed36fa74872a328f7f4fcb4d2e77f035faff3fd0674dbf249f736aa

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 39fa1c4274f1b540a3ecd82976c66d408b8bac873c1c5323849708146a8e9c16
MD5 e6aeeb816fede93fc66db543cac46bf1
BLAKE2b-256 e03172f4bf227ffcd1c1b208400d814a7089f363bec26f3f9707627ac14c1e84

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46ba2d8feeee910e52774c2f1fe31817e3b124a04bd8ccc53ec9685ba96c00ec
MD5 fb923908f2ef3af0023a836faa667632
BLAKE2b-256 2f873c94f80f8b4d2de740e725ceedc58b01eb7464c4bc723849d5e8772237ec

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f076bb12f994f9d63619ed1b4aeb4396bf8ad9059c886d77283375c9467b332b
MD5 7037e373dee46cfd9f9049aaac084ffc
BLAKE2b-256 b5558f531df6bde3450a3b35b4affcb630ec63c90a5dbc102d8dd1d3a3833de5

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d7a1367739d7326e1fa0126ea5de45517542a7c8fabc9aabbda7c93f4b6a533
MD5 9ce5f71a2a601ce4037551614ded23a5
BLAKE2b-256 16bee9eec4c9d2fd93aaf71f1d9f1b3eea6cb864e0cd7c3d2e556818c0af4564

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ec901159b05d9bef52a7e98fc131f93a43266dae17482846940b00b2602d226
MD5 f0f2c297946847a89aaad71ad60fc658
BLAKE2b-256 262fc8b94f0573580bf2511e10fc3b1b23bd71bdeecf3d81eb97c54fb6709aeb

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc48a0e6687a40535bd648079bde841144379a1c0c10de7720449a8cbb90319b
MD5 b987e1de6566b1a1d2b2f4c5ab147e9a
BLAKE2b-256 1a322be043aabaacc2ba285313f1dd1391df98a577b7a2827bd71123eef69342

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38d681c41012e3d2175fdb2125a58beb75f892ad0732d270b1f0c091e0d17100
MD5 f0e33571a4e960ba77d10c3e104501f9
BLAKE2b-256 b7d2ba6e03ed102bc9c917c34d1c0942e24b099773fd10ec2ebcd9df1e5b612a

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 91b7948f81c4a61d6abe3a7da0704bdde5e781791b8a46e2004109268e762579
MD5 28efb7be9765acea455b6517a30a7e56
BLAKE2b-256 28b856ea5118ae23c3efdbcacc090ef20cd7fecb79c10c280d70591d2c763510

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 870de86fe3b9235c1837b8a9679a11d9b63c8e444b78ef3416a6502690c962b4
MD5 eeb7525aca87e3abe249d60ea8b7efc6
BLAKE2b-256 44ec3ef2cc8746ebd5abaf0879b3b296784519b722b1704fb12dc0be3362dbd9

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d7d642fea5cd0c090001524653e11fce522ba3eea3a1fe6e981a8b044320233
MD5 f21be67619927b326d7ab6c0fecbacdd
BLAKE2b-256 62886251516c8ac5ce68265596c59f86acc7f5821f6f463bda931c4f095e77eb

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2fda08eec0a7149d4e30255dceb85c07eb5ed535a5566b5a3f0639ff320e08a3
MD5 edd34c4788113e8bebdd59013528d1dd
BLAKE2b-256 3b86200757090de96252efb6de1720cc0925017d4c79ce350ab65ba27e6fe7a2

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 156b19e2d383b40d3c70dd670b3f7b2c8c3c22f13ad119ec9fc1399b2a24908d
MD5 734d88670a0c0c48ac526f2028b63e04
BLAKE2b-256 02e0bbce4974aafc81d20aabe6fe30e18bd24b8781b8c42ef9111f451d3fd2d6

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2aaa3e113e1c425762e89de920045358cc5c47352d5716d01d736c8af7074292
MD5 6c31b7f3be82595256bc81c0f177ff24
BLAKE2b-256 38ca53fcc941344bc3e329ebb121dee2a443df64e6c97694754924aef5b6157b

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55c9ae75fec46238e582297ab9a90ea31dc59e47ad8335e81e8ea94b885cc943
MD5 18168e694fc6ba3550ae24e3f606dfea
BLAKE2b-256 f0ae99ea1af519b34deb992f1e63b680573d257b0c834b144896721492a2e710

See more details on using hashes here.

File details

Details for the file spacy_experimental-0.6.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for spacy_experimental-0.6.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5d69128d81955e843d0f61804fd0eacf98dd77565ea880335a3cb6083a81366
MD5 88d781bfaddd279beeb298fce21c70d6
BLAKE2b-256 993556c636d99bff55751ea62ed490b8b27fcc0f131730edb59a1f02d1a0ed76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page