Skip to main content

Keyword extraction with spaCy

Project description

spacy_ke: Keyword Extraction with spaCy.

⏳ Installation

pip install spacy_ke

🚀 Quickstart

Usage as a spaCy pipeline component (spaCy v2.x.x)

import spacy
import spacy_ke

# load spacy model
nlp = spacy.load("en_core_web_sm")

# spacy v3.0.x factory.
# if you're using spacy v2.x.x swich to `nlp.add_pipe(spacy_ke.Yake(nlp))`
nlp.add_pipe("yake")

doc = nlp(
    "Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence "
    "concerned with the interactions between computers and human language, in particular how to program computers "
    "to process and analyze large amounts of natural language data. "
)

for keyword, score in doc._.extract_keywords(n=3):
    print(keyword, "-", score)

Configure the pipeline component

Normally you'd want to configure the keyword extraction pipeline according to its implementation.

window: int = 2  # default
lemmatize: bool = False  # default
candidate_selection: str = "ngram"  # default, use "chunk" for noun phrase selection.

nlp.add_pipe(
    Yake(
        nlp,
        window=window,  # default
        lemmatize=lemmatize,  # default
        candidate_selection="ngram"  # default, use "chunk" for noun phrase selection
    )
)

And if you want to define a custom candidate selection use the example below.

from typing import Iterable
from spacy.tokens import Doc
from spacy_ke.util import registry, Candidate


@registry.candidate_selection.register("custom")
def custom_selection(doc: Doc, n=3) -> Iterable[Candidate]:
    ...


nlp.add_pipe(
    Yake(
        nlp,
        candidate_selection="custom"
    )
)

Development

Set up virtualenv

$ python -m venv .venv
$ source .venv/bin/activate

Install dependencies

$ pip install -U pip
$ pip install -r requirements-dev.txt

Run unit test

$ pytest

Run black (code formatter)

$ black spacy_ke/ --config=pyproject.toml

Release package (via twine)

$ python setup.py upload

References

[1] A Review of Keyphrase Extraction

@article{DBLP:journals/corr/abs-1905-05044,
  author    = {Eirini Papagiannopoulou and
               Grigorios Tsoumakas},
  title     = {A Review of Keyphrase Extraction},
  journal   = {CoRR},
  volume    = {abs/1905.05044},
  year      = {2019},
  url       = {http://arxiv.org/abs/1905.05044},
  archivePrefix = {arXiv},
  eprint    = {1905.05044},
  timestamp = {Tue, 28 May 2019 12:48:08 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1905-05044.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

[2] pke: an open source python-based keyphrase extraction toolkit.

@InProceedings{boudin:2016:COLINGDEMO,
  author    = {Boudin, Florian},
  title     = {pke: an open source python-based keyphrase extraction toolkit},
  booktitle = {Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations},
  month     = {December},
  year      = {2016},
  address   = {Osaka, Japan},
  pages     = {69--73},
  url       = {http://aclweb.org/anthology/C16-2015}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spacy_ke-0.1.4.tar.gz (13.3 kB view details)

Uploaded Source

Built Distribution

spacy_ke-0.1.4-py3-none-any.whl (27.7 kB view details)

Uploaded Python 3

File details

Details for the file spacy_ke-0.1.4.tar.gz.

File metadata

  • Download URL: spacy_ke-0.1.4.tar.gz
  • Upload date:
  • Size: 13.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for spacy_ke-0.1.4.tar.gz
Algorithm Hash digest
SHA256 4effa703954b1f3309ae99648acb3ea4764797c9b77d83c0ec319ab832dc103d
MD5 9dc175bb28013f3a18aab1c86fda0ecd
BLAKE2b-256 0d30e0dff7f1481d0ebc59084ed66d06e1837d8f2e844b9a360cf4ce05e6647f

See more details on using hashes here.

File details

Details for the file spacy_ke-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: spacy_ke-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 27.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for spacy_ke-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 746f333c3a9fc7ac19661d3a0882758402183f5f3722f0ab124b5d9e30e3160c
MD5 f33a66e610048b04e8069ac2c328da8c
BLAKE2b-256 184534edca4ff8de00be107c8e87e8cd0856ad6cf45502b95d7686c3c4c580cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page