Skip to main content

Add a short description here!

Project description

spaCy WordNet

spaCy Wordnet is a simple custom component for using WordNet, MultiWordnet and WordNet domains with spaCy.

The component combines the NLTK wordnet interface with WordNet domains to allow users to:

  • Get all synsets for a processed token. For example, getting all the synsets (word senses) of the word bank.
  • Get and filter synsets by domain. For example, getting synonyms of the verb withdraw in the financial domain.

Getting started

The spaCy WordNet component can be easily integrated into spaCy pipelines. You just need the following:

Prerequisites

  • Python 3.X
  • spaCy

You also need to install the following NLTK wordnet data:

python -m nltk.downloader wordnet
python -m nltk.downloader omw

Install

pip install spacy-wordnet

Supported languages

Almost all Open Multi Wordnet languages are supported.

Usage

Once you choose the desired language (from the list of supported ones above), you will need to manually download a spaCy model for it. Check the list of available models for each language at SpaCy 2.x or SpaCy 3.x.

English example

Download example model:

python -m spacy download en_core_web_sm

Run:

import spacy

from spacy_wordnet.wordnet_annotator import WordnetAnnotator 

# Load an spacy model
nlp = spacy.load('en_core_web_sm')
# Spacy 3.x
nlp.add_pipe("spacy_wordnet", after='tagger')
# Spacy 2.x
# nlp.add_pipe(WordnetAnnotator(nlp, name="spacy_wordnet"), after='tagger')
token = nlp('prices')[0]

# wordnet object link spacy token with nltk wordnet interface by giving acces to
# synsets and lemmas 
token._.wordnet.synsets()
token._.wordnet.lemmas()

# And automatically tags with wordnet domains
token._.wordnet.wordnet_domains()

spaCy WordNet lets you find synonyms by domain of interest for example economy

economy_domains = ['finance', 'banking']
enriched_sentence = []
sentence = nlp('I want to withdraw 5,000 euros')

# For each token in the sentence
for token in sentence:
    # We get those synsets within the desired domains
    synsets = token._.wordnet.wordnet_synsets_for_domain(economy_domains)
    if not synsets:
        enriched_sentence.append(token.text)
    else:
        lemmas_for_synset = [lemma for s in synsets for lemma in s.lemma_names()]
        # If we found a synset in the economy domains
        # we get the variants and add them to the enriched sentence
        enriched_sentence.append('({})'.format('|'.join(set(lemmas_for_synset))))

# Let's see our enriched sentence
print(' '.join(enriched_sentence))
# >> I (need|want|require) to (draw|withdraw|draw_off|take_out) 5,000 euros
    

Portuguese example

Download example model:

python -m spacy download pt_core_news_sm

Run:

import spacy

from spacy_wordnet.wordnet_annotator import WordnetAnnotator 

# Load an spacy model
nlp = spacy.load('pt_core_news_sm')
# Spacy 3.x
nlp.add_pipe("spacy_wordnet", after='tagger', config={'lang': nlp.lang})
# Spacy 2.x
# nlp.add_pipe(WordnetAnnotator(nlp.lang), after='tagger')
text = "Eu quero retirar 5.000 euros"
economy_domains = ['finance', 'banking']
enriched_sentence = []
sentence = nlp(text)

# For each token in the sentence
for token in sentence:
    # We get those synsets within the desired domains
    synsets = token._.wordnet.wordnet_synsets_for_domain(economy_domains)
    if not synsets:
        enriched_sentence.append(token.text)
    else:
        lemmas_for_synset = [lemma for s in synsets for lemma in s.lemma_names('por')]
        # If we found a synset in the economy domains
        # we get the variants and add them to the enriched sentence
        enriched_sentence.append('({})'.format('|'.join(set(lemmas_for_synset))))

# Let's see our enriched sentence
print(' '.join(enriched_sentence))
# >> Eu (querer|desejar|esperar) retirar 5.000 euros

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spacy-wordnet-0.1.0.tar.gz (651.6 kB view details)

Uploaded Source

Built Distribution

spacy_wordnet-0.1.0-py2.py3-none-any.whl (652.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file spacy-wordnet-0.1.0.tar.gz.

File metadata

  • Download URL: spacy-wordnet-0.1.0.tar.gz
  • Upload date:
  • Size: 651.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for spacy-wordnet-0.1.0.tar.gz
Algorithm Hash digest
SHA256 2102145ca92e37e94d775e80a05c7e303d977a5a7fd4ff4d5de6e17a251117cd
MD5 731f9fe4cb88c76f374b8f9db6dfd8f3
BLAKE2b-256 095f46b883073e4d9ab68a6635b33c6f48e8496de4feb0838eaadd38d0921e32

See more details on using hashes here.

File details

Details for the file spacy_wordnet-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for spacy_wordnet-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ff81865fafa1bf9c84b8e741c57b5489ecb61a816b5f3316d093613dd9a6c437
MD5 4f84a297f5f965c29d823afa88b79d9e
BLAKE2b-256 206e3263cc4117399c6df0460ee7b7f69e82ccfea2a924dd92f42af2279cdad7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page