Skip to main content

Wrappers for including pre-trained transformers in spaCy pipelines

Project description

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

PyPI version python version Code style: black github actions pytest github actions docs github coverage CodeFactor

Installation

Installing spacy-wrap is simple using pip:

pip install spacy_wrap

There is no reason to update from GitHub as the version on PyPI should always be the same as on GitHub.

Example

The following shows a simple example of how you can quickly add a fine-tuned transformer model from the Huggingface model hub. In this example we will use the sentiment model by Barbieri et al. (2020) for classifying whether a tweet is positive, negative or neutral. We will add this model to a blank English pipeline:

import spacy
import spacy_wrap

nlp = spacy.blank("en")

config = {
    "doc_extension_trf_data": "clf_trf_data",  # document extention for the forward pass
    "doc_extension_prediction": "sentiment",  # document extention for the prediction
    "labels": ["negative", "neutral", "positive"],
    "model": {
        "name": "cardiffnlp/twitter-roberta-base-sentiment",  # the model name or path of huggingface model
    },
}

transformer = nlp.add_pipe("classification_transformer", config=config)
transformer.model.initialize()

doc = nlp("spaCy is a wonderful tool")

print(doc._.clf_trf_data)
# TransformerData(wordpieces=...
print(doc._.sentiment)
# 'positive'
print(doc._.sentiment_prob)
#{'prob': array([0.004, 0.028, 0.969], dtype=float32), 'labels': ['negative', 'neutral', 'positive']}

These pipelines can also easily be applied to multiple documents using the nlp.pipe as one would expect from a spaCy component:

docs = nlp.pipe(
    [
        "I hate wrapping my own models",
        "Isn't there a tool for this?",
        "spacy-wrap is great for wrapping models",
    ]
)

for doc in docs:
    print(doc._.sentiment)
# 'negative'
# 'neutral'
# 'positive'

More Examples

It is always nice to have more than one example. Here is another one where we add the Hate speech model for Danish to a blank Danish pipeline:

import spacy
import spacy_wrap

nlp = spacy.blank("da")

config = {
    "doc_extension_trf_data": "clf_trf_data",  # document extention for the forward pass
    "doc_extension_prediction": "hate_speech",  # document extention for the prediction
    "labels": ["Not hate Speech", "Hate speech"],
    "model": {
        "name": "DaNLP/da-bert-hatespeech-detection",  # the model name or path of huggingface model
    },
}

transformer = nlp.add_pipe("classification_transformer", config=config)
transformer.model.initialize()

doc = nlp("Senile gamle idiot") # old senile idiot

doc._.clf_trf_data
# TransformerData(wordpieces=...
doc._.hate_speech
# "Hate speech"
doc._.hate_speech_prob
# {'prob': array([0.013, 0.987], dtype=float32), 'labels': ['Not hate Speech', 'Hate speech']}

📖 Documentation

Documentation
🔧 Installation Installation instructions for spacy-wrap.
📰 News and changelog New additions, changes and version history.
🎛 Documentation The reference for spacy-wrap's API.

💬 Where to ask questions

Type
🚨 FAQ FAQ
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests & Ideas GitHub Issue Tracker
👩‍💻 Usage Questions GitHub Discussions
🗯 General Discussion GitHub Discussions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spacy-wrap-0.0.3.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

spacy_wrap-0.0.3-py2.py3-none-any.whl (9.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file spacy-wrap-0.0.3.tar.gz.

File metadata

  • Download URL: spacy-wrap-0.0.3.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for spacy-wrap-0.0.3.tar.gz
Algorithm Hash digest
SHA256 14f68352bbd5a3a28431bfc377f2bd5d58e46d36994073037f04bc9bc1d28f98
MD5 65b7c130eb997599a71678ac024abbbc
BLAKE2b-256 49b44c7a26e7b64db320ed56f12a7880be93050af234d89e7c3f49662c96a2a0

See more details on using hashes here.

File details

Details for the file spacy_wrap-0.0.3-py2.py3-none-any.whl.

File metadata

  • Download URL: spacy_wrap-0.0.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for spacy_wrap-0.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 65d0679114a4b59612db07a7a21a1d1ef46b5f3e4f1e8b71f8360709a46acb83
MD5 b511b0ebaef3bf7e75af7f5f5eacaf88
BLAKE2b-256 7eb3f3478b374cd2efa713a06001138e76c22a0e45c3600b68f2e3f2f553eb68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page