Skip to main content

Wrappers for including pre-trained transformers in spaCy pipelines

Project description

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

PyPI version python version Code style: black github actions pytest github actions docs github coverage CodeFactor

spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from the Huggingface model hub in your spaCy pipeline allowing inclusion of existing models within SpaCy workflows.

As for as possible it follows a similar API as spacy-transformers.

Installation

Installing spacy-wrap is simple using pip:

pip install spacy_wrap

There is no reason to update from GitHub as the version on PyPI should always be the same as on GitHub.

Example

The following shows a simple example of how you can quickly add a fine-tuned transformer model from the Huggingface model hub. In this example we will use the sentiment model by Barbieri et al. (2020) for classifying whether a tweet is positive, negative or neutral. We will add this model to a blank English pipeline:

import spacy
import spacy_wrap

nlp = spacy.blank("en")

config = {
    "doc_extension_trf_data": "clf_trf_data",  # document extention for the forward pass
    "doc_extension_prediction": "sentiment",  # document extention for the prediction
    "labels": ["negative", "neutral", "positive"],
    "model": {
        "name": "cardiffnlp/twitter-roberta-base-sentiment",  # the model name or path of huggingface model
    },
}

transformer = nlp.add_pipe("classification_transformer", config=config)

doc = nlp("spaCy is a wonderful tool")

print(doc._.clf_trf_data)
# TransformerData(wordpieces=...
print(doc._.sentiment)
# 'positive'
print(doc._.sentiment_prob)
#{'prob': array([0.004, 0.028, 0.969], dtype=float32), 'labels': ['negative', 'neutral', 'positive']}

These pipelines can also easily be applied to multiple documents using the nlp.pipe as one would expect from a spaCy component:

docs = nlp.pipe(
    [
        "I hate wrapping my own models",
        "Isn't there a tool for this?",
        "spacy-wrap is great for wrapping models",
    ]
)

for doc in docs:
    print(doc._.sentiment)
# 'negative'
# 'neutral'
# 'positive'

More Examples

It is always nice to have more than one example. Here is another one where we add the Hate speech model for Danish to a blank Danish pipeline:

import spacy
import spacy_wrap

nlp = spacy.blank("da")

config = {
    "doc_extension_trf_data": "clf_trf_data",  # document extention for the forward pass
    "doc_extension_prediction": "hate_speech",  # document extention for the prediction
    "labels": ["Not hate Speech", "Hate speech"],
    "model": {
        "name": "DaNLP/da-bert-hatespeech-detection",  # the model name or path of huggingface model
    },
}

transformer = nlp.add_pipe("classification_transformer", config=config)
transformer.model.initialize()

doc = nlp("Senile gamle idiot") # old senile idiot

doc._.clf_trf_data
# TransformerData(wordpieces=...
doc._.hate_speech
# "Hate speech"
doc._.hate_speech_prob
# {'prob': array([0.013, 0.987], dtype=float32), 'labels': ['Not hate Speech', 'Hate speech']}

📖 Documentation

Documentation
🔧 Installation Installation instructions for spacy-wrap.
📰 News and changelog New additions, changes and version history.
🎛 Documentation The reference for spacy-wrap's API.

💬 Where to ask questions

Type
🚨 FAQ FAQ
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests & Ideas GitHub Issue Tracker
👩‍💻 Usage Questions GitHub Discussions
🗯 General Discussion GitHub Discussions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spacy-wrap-0.0.8.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

spacy_wrap-0.0.8-py2.py3-none-any.whl (12.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file spacy-wrap-0.0.8.tar.gz.

File metadata

  • Download URL: spacy-wrap-0.0.8.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for spacy-wrap-0.0.8.tar.gz
Algorithm Hash digest
SHA256 df1fd0cd431d941194317a54b86b859079fdefad558da910a36c0e5e98b0b9ac
MD5 d40dd68e710006cf72947b9af479811f
BLAKE2b-256 1e8db95ea12bee403e1ebc05f9e57ea812cad381f64278c6def98fb283114402

See more details on using hashes here.

File details

Details for the file spacy_wrap-0.0.8-py2.py3-none-any.whl.

File metadata

  • Download URL: spacy_wrap-0.0.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for spacy_wrap-0.0.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1daa4022aa631770a8ce9b35e79fe33c67cf9ea9e94da1bd866251e18bb8d0b0
MD5 1b73131c3e0e8a28658df2f96ed81a83
BLAKE2b-256 dce8a14953156a4cff6acf371a1d3aac19776b514a6d6f0afba286db92fa6099

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page