A package for NLP in Spanish
Project description
Spanish NLP
Introduction
Spanish NLP is the first low code Python library for Natural Language Processing in Spanish. It provides three main modules:
- Preprocess: it offers several text preprocessing options to clean and prepare texts for further analysis.
- Classify: it allows users to quickly classify texts using different pre-trained models
- Augmentation: it allows generate synthetic data. It is useful for increasing labeled data and improving results in classification model training.
Installation
Spanish NLP can be installed via pip:
pip install spanish_nlp
Usage
Preprocessing
See more information in the Jupyter Notebook example
To preprocess text using the preprocess module, you can import it and call the desired parameters:
from spanish_nlp import preprocess
sp = preprocess.SpanishPreprocess(
lower=False,
remove_url=True,
remove_hashtags=False,
split_hashtags=True,
normalize_breaklines=True,
remove_emoticons=False,
remove_emojis=False,
convert_emoticons=False,
convert_emojis=False,
normalize_inclusive_language=True,
reduce_spam=True,
remove_vowels_accents=True,
remove_multiple_spaces=True,
remove_punctuation=True,
remove_unprintable=True,
remove_numbers=True,
remove_stopwords=False,
stopwords_list=None,
lemmatize=False,
stem=False,
remove_html_tags=True,
)
test_text = """𝓣𝓮𝔁𝓽𝓸 𝓭𝓮 𝓹𝓻𝓾𝓮𝓫𝓪
<b>Holaaaaaaaa a todxs </b>, este es un texto de prueba :) a continuación les mostraré un poema de Roberto Bolaño llamado "Los perros románticos" 🤭👀😅
https://www.poesi.as/rb9301.htm
¡Me gustan los pingüinos! Sí, los PINGÜINOS 🐧🐧🐧 🐧 #VivanLosPinguinos #SíSeñor #PinguinosDelMundoUníos #ÑanduesDelMundoTambién
Si colaboras con este repositorio te puedes ganar $100.000 (en dinero falso). O tal vez 20 pingüinos. Mi teléfono es +561212121212"""
print(sp.transform(test_text, debug=False))
Output:
hola a todos este es un texto de prueba:) a continuacion los mostrare un poema de roberto bolaño llamado los perros romanticos 🤭 👀 😅
me gustan los pinguinos si los pinguinos 🐧 🐧 🐧 🐧 vivan los pinguinos si señor pinguinos del mundo unios ñandues del mundo tambien
si colaboras con este repositorio te puedes ganar en dinero falso o tal vez pinguinos mi telefono es
Classification
See more information in the Jupyter Notebook example
Available classifiers
- Hate Speech (hate_speech)
- Incivility (incivility)
- Toxic Speech (toxic_speech)
- Sentiment Analysis (sentiment_analysis)
- Emotion Analysis (emotion_analysis)
- Irony Analysis (irony_analysis)
- Sexist Analysis (sexist_analysis)
- Racism Analysis (racism_analysis)
Classification Example
from spanish_nlp import classifiers
sc = classifiers.SpanishClassifier(model_name="hate_speech", device='cpu')
# DISCLAIMER: The following message is merely an example of hate speech and does not represent the views of the author or contributors.
t1 = "LAS MUJERES Y GAYS DEBERIAN SER EXTERMINADOS"
t2 = "El presidente convocó a una reunión a los representantes de los partidos políticos"
p1 = sc.predict(t1)
p2 = sc.predict(t2)
print("Text 1: ", t1)
print("Prediction 1: ", p1)
print("Text 2: ", t2)
print("Prediction 2: ", p2)
Output:
Text 1: LAS MUJERES Y GAYS DEBERÍAN SER EXTERMINADOS
Prediction 1: {'hate_speech': 0.7544152736663818, 'not_hate_speech': 0.24558477103710175}
Text 2: El presidente convocó a una reunión a los representantes de los partidos políticos
Prediction 2: {'not_hate_speech': 0.9793208837509155, 'hate_speech': 0.02067909575998783}
Augmentation
See more information in the Jupyter Notebook example
Available Augmentation Models
- Spelling augmentation
- Keyboard spelling method
- OCR spelling method
- Random spelling replace method
- Grapheme spelling
- Word spelling
- Remove punctuation
- Remove spaces
- Remove accents
- Lowercase
- Uppercase
- Randomcase
- All method
- Masked augmentation
- Sustitute method
- Insert method
- Others models under development (such as Synonyms, WordEmbeddings, GenerativeOpenSource, GenerativeOpenAI, BackTranslation, AbstractiveSummarization)
Augmentation Models Examples
from spanish_nlp import augmentation
ocr = augmentation.Spelling(method="ocr",
stopwords="default",
aug_percent=0.3,
tokenizer="default")
grapheme_spelling = augmentation.Spelling(method="grapheme_spelling",
stopwords="default",
aug_percent=0.3,
tokenizer="default")
masked_sustitute = augmentation.Masked(method="sustitute",
model="dccuchile/bert-base-spanish-wwm-cased",
tokenizer="default",
stopwords="default",
aug_percent=0.4,
device="cpu",
top_k=10)
text = "En aquel tiempo yo tenía veinte años y estaba loco. Había perdido un país pero había ganado un sueño. Y si tenía ese sueño lo demás no importaba. Ni trabajar ni rezar ni estudiar en la madrugada junto a los perros románticos."
new_texts = [text]
new_texts.append(ocr.augment(text, num_samples=1, num_workers=1))
new_texts.append(grapheme_spelling.augment(text, num_samples=1, num_workers=1))
new_texts.append(masked_sustitute.augment(text, num_samples=1))
for t in new_texts:
print(t)
print("---")
Output:
En aquel tiempo yo tenía veinte años y estaba loco. Había perdido un país pero había ganado un sueño. Y si tenía ese sueño lo demás no importaba. Ni trabajar ni rezar ni estudiar en la madrugada junto a los perros románticos.
---
['En a9uel tiempo yo tenía veint3 años y e8ta8a 1oco. Había Rerd1dQ un RaíB pePQ había ganado Vn su3ño. Y si tenía es3 BVeno lo 0emáB n0 iWRQPtaEa. N1 trabajar ni rezar ni 3s7ud1ar en la maOrVga0a junto a 1os p3rPo8 Pománt1Go5.']
---
['Em akel tiempo yo tenía veinte años y estaba loco. Había perdido un país pero abía janado um sueño. Y si temía ese sueño lo demás no importava. Ni trabajar ni rezar ni estudiar em la nadrugada junto a los perros románticos.']
---
['En aquel tiempo yo tenía veinte años y estaba loco. Había perdido un país pero había ganado un sueño. Y si tenía mi sueño lo demás no importaba. ni trabajar ni rezar ni estudiar en la madrugada junto a los clubes románticos.']
---
License
Spanish NLP is licensed under the GNU General Public License v3.0.
Author
This project was developed by Jorge Ortiz-Fuentes, Linguist and Data Scientist from Chile.
Acknowledgements
We would like to express our gratitude to the Millennium Institute For Foundational Research and Department of Computer Science at the University of Chile for supporting the development of Spanish NLP. Special thanks to Felipe Bravo-Marquéz, Ricardo Cordova and Hernán Sarmiento for their knowledge, support and invaluable contribution to the project.
Contributing
Contributions to Spanish NLP are welcome! Please see the contributing guide for more information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file spanish_nlp-0.2.11.tar.gz
.
File metadata
- Download URL: spanish_nlp-0.2.11.tar.gz
- Upload date:
- Size: 35.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9069b2afaf11e9617fb1898730772f3ac6ba1c6a6f6843f531f8d2de191c4356 |
|
MD5 | cec1fd554979d5311de59b4d2fedc60c |
|
BLAKE2b-256 | cc13ae4fa94d702bd020a09d03f7492e69e8480d0df7bbbf3c82a4c8ee7b810c |
File details
Details for the file spanish_nlp-0.2.11-py3-none-any.whl
.
File metadata
- Download URL: spanish_nlp-0.2.11-py3-none-any.whl
- Upload date:
- Size: 38.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 691ca0e0b87e31d9b0f3b0b59fc01ac4564a1f610cd4b0f13ddc0997dd036248 |
|
MD5 | 623d7dcaacf8303797cb5acbb2e48170 |
|
BLAKE2b-256 | 8eb4c87a5bf3d4584e33d51a56d6c258d6cd8687746bffb576b9a5622352718f |