Skip to main content

NIH SPARC Python Client

Project description

sparc.client

NIH SPARC Python Client

PyPI Latest Release pypi Package Status License Coverage

Architecture details

The sparc.client Python Client stores its configuration in the config.ini file.

The modules of sparc.client are to be defined in services/ directory and need to be derived from BaseService class (services/_default.py) This means that they need to implement the specific functions defined in the interface, such as init, connect(), info(), get_profile(), set_profile() and close(). Apart from that functions, each module in the services may define their own methods (e.g. refer to services/pennsieve.py list_datasets()).

config.ini

The configuration file has the following format:

[global]
default_profile=ci

[prod]
pennsieve_profile_name=prod

[dev]
pennsieve_profile_name=test

[ci]
pennsieve_profile_name=ci

[global] section defines the default profile that is to be used. This basically refers to any section in brackets that stores configuration variables. In this case it refers to 'ci' section.

Within each section, different configuration variables could be defined. In our case, the only variable that needs to be defined is pennsieve_profile_name, which is passed to the Pennsieve2 library.

Module automatic import

Each python file in services/ folder with defined class name that is derived from BaseService is imported as a module to SparcClient class.

For example, Pennsieve module could be used in the following way:

from sparc.client import SparcClient
client = SparcClient(connect=False, config_file='config/config.ini')

# Run module prerequisities, e.g. start Pennsieve agent in the background
!pennsieve agent

# connect to the Pennsieve module, get Pennsieve Agent object
client.pennsieve.connect()

# execute internal functions of the module
client.pennsieve.info()

# alternatively connect all the services available
client.connect()  #connect to all services

Test generation - PyTest

Some good resource for implementing tests could be found at Medium.

Documentation - Sphinx tutorial

A fresh start for creating documentation with Sphinx could be found at towardsdatascience. To reproduce steps:

  1. Create a docs folder
  2. Run sphinx-quickstart in docs folder, fill the required prompts.
  3. Edit conf.py and index.rst files to adjust them to your needs
  4. Run in docs folder sphinx-apidoc -o . ../src
  5. Disregard modules.rst and sphinx.rst, attach sphinx.client to toctree in index.rst
  6. Run make html in docs folder.

Contribution Guide

  1. Define configuration variables in config.ini file (e.g api_key, api_secret etc.)
  2. Create a file in services/
  3. Create a class within this file that extends BaseService
  4. The class needs to define all the functions required + may add its own.

Developer Setup

Run pip install -e '.[test]' to install the dependencies needed for a development environment.

Run pytest --cov=./src to run the tests and get a test coverage summary.

Run pytest --cov-report html --cov=./src to run the tests and get a full HTML coverage report output to htmlcov.

Run python -m build to check if your package builds successfully.

The process is currently automated using Github Action in CI.yml.

Software releasing guidelines

The process of releasing new version of the software is fully automated.

This means that CHANGELOG.md as well as release commands are automatically generated.

The versioning is fully dynamic using git tags.

Please also note that there is no package/software version pyproject.toml. We use dynamic versioning provided by setuptools_scm

Also file sparc.client/_version.py should not be committed to the repository.

How commits should look like?

We are using Semantic Commit Messages for commits.

Basically this means that important commits should start with one of the following prefixes: chore:, docs:, feat:, fix:, refactor:, style:, or test:.

Additionally, we ask to refer to the issue number on Github (by adding a reference, e.g. #24234) Refer to issues

Releasing a new version

  1. In order to release a new version, an action 'Create new release' needs to be launched from Github Actions menu. Please navigate to 'Actions' and click 'Create new release' on the left hand side. On the right hand side, you can click 'Run workflow'

  2. After launching a workflow, specify manually a version. The version needs to start with 'v', e.g. 'v0.0.34'.

  3. Launching a workflow checks for the user permission (needs to be admin to the repository) and runs CI in order to verify integrity of the software.

  4. If the CI/CD test passes, a temporary tag is created. The commits which follow the symantic versioning naming convention are then used to create and update CHANGELOG.md.

  5. Once CHANGELOG.md is pushed to the main branch, the new version is tagged again and the software is released to Github and to PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sparc_client-0.3.1.tar.gz (781.4 kB view details)

Uploaded Source

Built Distribution

sparc.client-0.3.1-py3-none-any.whl (26.8 kB view details)

Uploaded Python 3

File details

Details for the file sparc_client-0.3.1.tar.gz.

File metadata

  • Download URL: sparc_client-0.3.1.tar.gz
  • Upload date:
  • Size: 781.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for sparc_client-0.3.1.tar.gz
Algorithm Hash digest
SHA256 a89aa229c1cf318fb9cd7fbf4e3f18fa6177f88c91a4c7a04d6c0f90a54a0ccb
MD5 aafdce3f63699971af196a6f79df5092
BLAKE2b-256 d6451e233d432353cbdf110f6d5153c152861482714055453633e0995270c86d

See more details on using hashes here.

File details

Details for the file sparc.client-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: sparc.client-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 26.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for sparc.client-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b8e8f01e7d831023cd41ce8d6c1165756833867e6f9c5b460a29c0a31e052d4f
MD5 47896149a26d1e4e189213cd1980c374
BLAKE2b-256 7a67274519cb078cf3c950f3931c675112bae309591dbd7eab2d4dcc4f51ed50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page