Visualization package for Spark NLP
Project description
spark-nlp-display
A library for the simple visualization of different types of Spark NLP annotations.
Supported Visualizations:
- Dependency Parser
- Named Entity Recognition
- Entity Resolution
- Relation Extraction
- Assertion Status
Complete Tutorial
https://github.com/JohnSnowLabs/spark-nlp-display/blob/main/tutorials/Spark_NLP_Display.ipynb
Requirements
- spark-nlp
- ipython
- svgwrite
- pandas
- numpy
Installation
pip install spark-nlp-display
How to use
Databricks
For all modules, pass in the additional parameter "return_html=True" in the display function and use Databrick's function displayHTML() to render visualization as explained below:
from sparknlp_display import NerVisualizer
ner_vis = NerVisualizer()
## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes
pipeline_result = ner_light_pipeline.fullAnnotate(text) ##light pipeline
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline
vis_html = ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
label_col='entities', #specify the entity column
document_col='document', #specify the document column (default: 'document')
labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
return_html=True)
displayHTML(vis_html)
Jupyter
To save the visualization as html, provide the export file path: save_path='./export.html'
for each visualizer.
Dependency Parser
from sparknlp_display import DependencyParserVisualizer
dependency_vis = DependencyParserVisualizer()
pipeline_result = dp_pipeline.fullAnnotate(text)
#pipeline_result = dp_full_pipeline.transform(df).collect()##full pipeline
dependency_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe.
pos_col = 'pos', #specify the pos column
dependency_col = 'dependency', #specify the dependency column
dependency_type_col = 'dependency_type', #specify the dependency type column
save_path='./export.html' # optional - to save viz as html. (default: None)
)
Named Entity Recognition
from sparknlp_display import NerVisualizer
ner_vis = NerVisualizer()
pipeline_result = ner_light_pipeline.fullAnnotate(text)
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline
ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
label_col='entities', #specify the entity column
document_col='document', #specify the document column (default: 'document')
labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
save_path='./export.html' # optional - to save viz as html. (default: None)
)
## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes
Entity Resolution
from sparknlp_display import EntityResolverVisualizer
er_vis = EntityResolverVisualizer()
pipeline_result = er_light_pipeline.fullAnnotate(text)
er_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
label_col='entities', #specify the ner result column
resolution_col = 'resolution',
document_col='document', #specify the document column (default: 'document')
save_path='./export.html' # optional - to save viz as html. (default: None)
)
## To set custom label colors:
er_vis.set_label_colors({'TREATMENT':'#800080', 'PROBLEM':'#77b5fe'}) #set label colors by specifying hex codes
Relation Extraction
from sparknlp_display import RelationExtractionVisualizer
re_vis = RelationExtractionVisualizer()
pipeline_result = re_light_pipeline.fullAnnotate(text)
re_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
relation_col = 'relations', #specify relations column
document_col = 'document', #specify document column
show_relations=True, #display relation names on arrows (default: True)
save_path='./export.html' # optional - to save viz as html. (default: None)
)
Assertion Status
from sparknlp_display import AssertionVisualizer
assertion_vis = AssertionVisualizer()
pipeline_result = ner_assertion_light_pipeline.fullAnnotate(text)
assertion_vis.display(pipeline_result[0],
label_col = 'entities', #specify the ner result column
assertion_col = 'assertion', #specify assertion column
document_col = 'document', #specify the document column (default: 'document')
save_path='./export.html' # optional - to save viz as html. (default: None)
)
## To set custom label colors:
assertion_vis.set_label_colors({'TREATMENT':'#008080', 'problem':'#800080'}) #set label colors by specifying hex codes
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
spark-nlp-display-5.0.tar.gz
(85.5 kB
view details)
Built Distribution
File details
Details for the file spark-nlp-display-5.0.tar.gz
.
File metadata
- Download URL: spark-nlp-display-5.0.tar.gz
- Upload date:
- Size: 85.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46faa77553d3eb3fc968eb434303752f7baf39b39b03f17cd0934466b6a86620 |
|
MD5 | c9951302ea8858ac8a19e46692cacd90 |
|
BLAKE2b-256 | 9445c5b0fa0b31675946a13859fd2bad8a6816bdb08f30e64d8379820e67e409 |
File details
Details for the file spark_nlp_display-5.0-py3-none-any.whl
.
File metadata
- Download URL: spark_nlp_display-5.0-py3-none-any.whl
- Upload date:
- Size: 95.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ede785f68cd4299d4a93e389d26be90eeb0e24372de99d30b107ad19464c87e0 |
|
MD5 | 28ac92b19ddfff122e3a21d0db9b2b1b |
|
BLAKE2b-256 | 401e41eb41a6c69df8cb6a2906d7f44672118834af10cdb5b8f0f360e82ac988 |