Skip to main content

Python manager for spark-submit jobs

Project description

Spark-submit

PyPI version Downloads PyPI - Downloads Code style: blue License contributions welcome

TL;DR: Python manager for spark-submit jobs

Description

This package allows for submission and management of Spark jobs in Python scripts via Apache Spark's spark-submit functionality.

Installation

The easiest way to install is using pip:

pip install spark-submit

To install from source:

git clone https://github.com/PApostol/spark-submit.git
cd spark-submit
python setup.py install

For usage details check help(spark_submit).

Usage Examples

Spark arguments can either be provided as keyword arguments or as an unpacked dictionary.

Simple example:
from spark_submit import SparkJob

app = SparkJob('/path/some_file.py', master='local', name='simple-test')
app.submit()

print(app.get_state())
Another example:
from spark_submit import SparkJob

spark_args = {
    'master': 'spark://some.spark.master:6066',
    'deploy_mode': 'cluster',
    'name': 'spark-submit-app',
    'class': 'main.Class',
    'executor_memory': '2G',
    'executor_cores': '1',
    'total_executor_cores': '2',
    'verbose': True,
    'conf': ["spark.foo.bar='baz'", "spark.x.y='z'"],
    'main_file_args': '--foo arg1 --bar arg2'
    }

app = SparkJob('s3a://bucket/path/some_file.jar', **spark_args)
print(app.get_submit_cmd(multiline=True))

# poll state in the background every x seconds with `poll_time=x`
app.submit(use_env_vars=True,
           extra_env_vars={'PYTHONPATH': '/some/path/'},
           poll_time=10
           )

print(app.get_state()) # 'SUBMITTED'

while not app.concluded:
    # do other stuff...
    print(app.get_state()) # 'RUNNING'

print(app.get_state()) # 'FINISHED'

Examples of spark-submit to spark_args dictionary:

A client example:
~/spark_home/bin/spark-submit \
--master spark://some.spark.master:7077 \
--name spark-submit-job \
--total-executor-cores 8 \
--executor-cores 4 \
--executor-memory 4G \
--driver-memory 2G \
--py-files /some/utils.zip \
--files /some/file.json \
/path/to/pyspark/file.py --data /path/to/data.csv
becomes
spark_args = {
    'master': 'spark://some.spark.master:7077',
    'name': 'spark_job_client',
    'total_executor_cores: '8',
    'executor_cores': '4',
    'executor_memory': '4G',
    'driver_memory': '2G',
    'py_files': '/some/utils.zip',
    'files': '/some/file.json',
    'main_file_args': '--data /path/to/data.csv'
    }
main_file = '/path/to/pyspark/file.py'
app = SparkJob(main_file, **spark_args)
A cluster example:
~/spark_home/bin/spark-submit \
--master spark://some.spark.master:6066 \
--deploy-mode cluster \
--name spark_job_cluster \
--jars "s3a://mybucket/some/file.jar" \
--conf "spark.some.conf=foo" \
--conf "spark.some.other.conf=bar" \
--total-executor-cores 16 \
--executor-cores 4 \
--executor-memory 4G \
--driver-memory 2G \
--class my.main.Class \
--verbose \
s3a://mybucket/file.jar "positional_arg1" "positional_arg2"
becomes
spark_args = {
    'master': 'spark://some.spark.master:6066',
    'deploy_mode': 'cluster',
    'name': 'spark_job_cluster',
    'jars': 's3a://mybucket/some/file.jar',
    'conf': ["spark.some.conf='foo'", "spark.some.other.conf='bar'"], # note the use of quotes
    'total_executor_cores: '16',
    'executor_cores': '4',
    'executor_memory': '4G',
    'driver_memory': '2G',
    'class': 'my.main.Class',
    'verbose': True,
    'main_file_args': '"positional_arg1" "positional_arg2"'
    }
main_file = 's3a://mybucket/file.jar'
app = SparkJob(main_file, **spark_args)

Testing

You can do some simple testing with local mode Spark after cloning the repo.

Note any additional requirements for running the tests: pip install -r tests/requirements.txt

pytest tests/

python tests/run_integration_test.py

Additional methods

spark_submit.system_info(): Collects Spark related system information, such as versions of spark-submit, Scala, Java, PySpark, Python and OS

spark_submit.SparkJob.kill(): Kills the running Spark job (cluster mode only)

spark_submit.SparkJob.get_code(): Gets the spark-submit return code

spark_submit.SparkJob.get_output(): Gets the spark-submit stdout

spark_submit.SparkJob.get_id(): Gets the spark-submit submission ID

License

Released under MIT by @PApostol.

  • You can freely modify and reuse.
  • The original license must be included with copies of this software.
  • Please link back to this repo if you use a significant portion the source code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spark-submit-1.4.0.tar.gz (12.6 kB view details)

Uploaded Source

File details

Details for the file spark-submit-1.4.0.tar.gz.

File metadata

  • Download URL: spark-submit-1.4.0.tar.gz
  • Upload date:
  • Size: 12.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for spark-submit-1.4.0.tar.gz
Algorithm Hash digest
SHA256 246ca5bf239d821479c4418399d6f09e07b8c0957042e071107d328fafd4d920
MD5 8ddd29ba5fb920f575646b6d2f33b979
BLAKE2b-256 2ba551504208b6c435d42e644cfd39b631cc3ae7a621fcb4b61b605ea13d7104

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page