Skip to main content

AutoMapper for Spark

Project description

SparkAutoMapper

Fluent API to map data from one view to another in Spark.

Uses native Spark functions underneath so it is just as fast as hand writing the transformations.

Since this is just Python, you can use any Python editor. Since everything is typed using Python typings, most editors will auto-complete and warn you when you do something wrong

Usage

pip install sparkautomapper

SparkAutoMapper input and output

You can pass either a dataframe to SparkAutoMapper or specify the name of a Spark view to read from.

You can receive the result as a dataframe or (optionally) pass in the name of a view where you want the result.

Dynamic Typing Examples

Set a column in destination to a text value (read from pass in data frame and return the result in a new dataframe)

Set a column in destination to a text value

from spark_auto_mapper.automappers.automapper import AutoMapper

mapper = AutoMapper(
    keys=["member_id"]
).columns(
    dst1="hello"
)

Set a column in destination to a text value (read from a Spark view and put result in another Spark view)

Set a column in destination to a text value

from spark_auto_mapper.automappers.automapper import AutoMapper

mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    dst1="hello"
)

Set a column in destination to an int value

Set a column in destination to a text value

from spark_auto_mapper.automappers.automapper import AutoMapper

mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    dst1=1050
)

Copy a column (src1) from source_view to destination view column (dst1)

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A

mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    dst1=A.column("src1")
)

Or you can use the shortcut for specifying a column (wrap column name in [])

from spark_auto_mapper.automappers.automapper import AutoMapper

mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    dst1="[src1]"
)

Convert data type for a column (or string literal)

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A

mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    birthDate=A.date(A.column("date_of_birth"))
)

Use a Spark SQL Expression (Any valid Spark SQL expression can be used)

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A

mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    gender=A.expression(
    """
    CASE
        WHEN `Member Sex` = 'F' THEN 'female'
        WHEN `Member Sex` = 'M' THEN 'male'
        ELSE 'other'
    END
    """
    )
)

Specify multiple transformations

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A

mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    dst1="[src1]",
    birthDate=A.date("[date_of_birth]"),
    gender=A.expression(
                """
    CASE
        WHEN `Member Sex` = 'F' THEN 'female'
        WHEN `Member Sex` = 'M' THEN 'male'
        ELSE 'other'
    END
    """
    )
)

Use variables or parameters

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A

def mapping(parameters: dict):
    mapper = AutoMapper(
        view="members",
        source_view="patients",
        keys=["member_id"]
    ).columns(
        dst1=A.column(parameters["my_column_name"])
    )

Use conditional logic

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A

def mapping(parameters: dict):
    mapper = AutoMapper(
        view="members",
        source_view="patients",
        keys=["member_id"]
    ).columns(
        dst1=A.column(parameters["my_column_name"])
    )

    if parameters["customer"] == "Microsoft":
        mapper = mapper.columns(
            important_customer=1,
            customer_name=parameters["customer"]
        )
    return mapper

Using nested array columns

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A
mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).withColumn(
    dst2=A.list(
        [
            "address1",
            "address2"
        ]
    )
)

Using nested struct columns

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A
mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    dst2=A.complex(
        use="usual",
        family="imran"
    )
)

Using lists of structs

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A
mapper = AutoMapper(
    view="members",
    source_view="patients",
    keys=["member_id"]
).columns(
    dst2=A.list(
        [
            A.complex(
                use="usual",
                family="imran"
            ),
            A.complex(
                use="usual",
                family="[last_name]"
            )
        ]
    )
)

Executing the AutoMapper

spark.createDataFrame(
    [
        (1, 'Qureshi', 'Imran'),
        (2, 'Vidal', 'Michael'),
    ],
    ['member_id', 'last_name', 'first_name']
).createOrReplaceTempView("patients")

source_df: DataFrame = spark.table("patients")

df = source_df.select("member_id")
df.createOrReplaceTempView("members")

result_df: DataFrame = mapper.transform(df=df)

Statically Typed Examples

To improve the auto-complete and syntax checking even more, you can define Complex types:

Define a custom data type:

from spark_auto_mapper.type_definitions.automapper_defined_types import AutoMapperTextInputType
from spark_auto_mapper.helpers.automapper_value_parser import AutoMapperValueParser
from spark_auto_mapper.data_types.date import AutoMapperDateDataType
from spark_auto_mapper.data_types.list import AutoMapperList
from spark_auto_mapper_fhir.fhir_types.automapper_fhir_data_type_complex_base import AutoMapperFhirDataTypeComplexBase


class AutoMapperFhirDataTypePatient(AutoMapperFhirDataTypeComplexBase):
    # noinspection PyPep8Naming
    def __init__(self,
                 id_: AutoMapperTextInputType,
                 birthDate: AutoMapperDateDataType,
                 name: AutoMapperList,
                 gender: AutoMapperTextInputType
                 ) -> None:
        super().__init__()
        self.value = dict(
            id=AutoMapperValueParser.parse_value(id_),
            birthDate=AutoMapperValueParser.parse_value(birthDate),
            name=AutoMapperValueParser.parse_value(name),
            gender=AutoMapperValueParser.parse_value(gender)
        )

Now you get auto-complete and syntax checking:

from spark_auto_mapper.automappers.automapper import AutoMapper
from spark_auto_mapper.helpers.automapper_helpers import AutoMapperHelpers as A
mapper = AutoMapperFhir(
    view="members",
    source_view="patients",
    keys=["member_id"]
).withResource(
    resource=F.patient(
        id_=A.column("a.member_id"),
        birthDate=A.date(
            A.column("date_of_birth")
        ),
        name=A.list(
            F.human_name(
                use="usual",
                family=A.column("last_name")
            )
        ),
        gender="female"
    )
)

Publishing a new package

  1. Edit VERSION to increment the version
  2. Create a new release
  3. The GitHub Action should automatically kick in and publish the package
  4. You can see the status in the Actions tab

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sparkautomapper-0.1.43.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

sparkautomapper-0.1.43-py3-none-any.whl (70.5 kB view details)

Uploaded Python 3

File details

Details for the file sparkautomapper-0.1.43.tar.gz.

File metadata

  • Download URL: sparkautomapper-0.1.43.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.12

File hashes

Hashes for sparkautomapper-0.1.43.tar.gz
Algorithm Hash digest
SHA256 94783271a95c0bfd7c09f91af33a30e08166d061cdb9faa10419a1a3246ca5cd
MD5 7fd8f873fb09269b9ccea08ecb4bc10c
BLAKE2b-256 01dd922ea7a59f06c0ad365456bcffcfa81cac85930a39ebd276d93c30af3291

See more details on using hashes here.

File details

Details for the file sparkautomapper-0.1.43-py3-none-any.whl.

File metadata

  • Download URL: sparkautomapper-0.1.43-py3-none-any.whl
  • Upload date:
  • Size: 70.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.12

File hashes

Hashes for sparkautomapper-0.1.43-py3-none-any.whl
Algorithm Hash digest
SHA256 a21bfd43a4af5f03498efdc82f403c846d8ba026b06229a1cf12383815bdd53d
MD5 15ec6bd1fd22320c892d441582977bb8
BLAKE2b-256 31a0ee9a8e7c952281974e3af9960d44868b0063b55e3470ad7d5857adaea1b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page