Skip to main content

Enable a Pandas like API on PySpark

Project description

<img align="right" src="docs/img/logo.jpg">



SparklingPandas aims to make it easy to use the distributed computing power
of PySpark to scale your data analysis with Pandas. SparklingPandas builds on
Spark's DataFrame class to give you a polished, pythonic, and Pandas-like API.


See [](

An early version of Sparkling Pandas was discussed in [Sparkling Pandas - using
Apache Spark to scale Pandas - Holden Karau and Juliet Hougland](


The primary requirement of SparklingPandas is that you have a recent (v1.4
currently) version of Spark installed - <> and Python


Make sure you have the SPARK_HOME environment variable set correctly, as
SparklingPandas uses this for including the PySpark libraries

Other than that you can install SparklingPandas with pip and just import it.


This is in early development. Feedback is taken seriously and is seriously appreciated.
As you can tell, us SparklingPandas are a pretty serious bunch.


Check out our Google group at!forum/sparklingpandas

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for sparklingpandas, version 0.0.6
Filename, size File type Python version Upload date Hashes
Filename, size sparklingpandas-0.0.6.tar.gz (8.5 MB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page