Skip to main content

A pyspark management framework

Project description

Spark Management Consolidated
=============================

A small module that will load as a singleton class object to manage Spark
related things.

Installation
------------

Directly via ``pip`` on the command line, in a `virtualenv`:

.. code:: shell

pip install https://github.com/matz-e/sparkmanager/tarball/master

or for the current user:

.. code:: shell

pip install --user https://github.com/matz-e/sparkmanager/tarball/master

Usage
-----

The module itself acts as a mediator to Spark:

.. code:: python

import sparkmanager as sm

# Create a new application
sm.create("My fancy name")

data = sm.spark.range(5)
# Will show up in the UI with the name "broadcasting some data"
with sm.jobgroup("broadcasting some data"):
data = sm.broadcast(data.collect())

The Spark session can be accessed via ``sm.spark``, the Spark context via
``sm.sc``. Both attributes are instantiated once the ``create`` method is
called, with the option to call unambiguous methods from both directly via
the :py:class:`SparkManager` object:

.. code:: python

# The following two calls are equivalent
c = sm.parallelize(range(5))
d = sm.sc.parallelize(range(5))
assert c.collect() == d.collect()

Cluster support scripts
-----------------------

.. note::

Scripts to run on the cluster are still somewhat experimental and should
be used with caution!

Environment setup
~~~~~~~~~~~~~~~~~

To create a self-contained Spark environment, the script provided in
``examples/env.sh`` can be used. It is currently tuned to the requirements of
the `bbpviz` cluster. A usage example:

.. code:: shell

SPARK_ROOT=/path/to/my/spark/installation SM_WORKDIR=/path/to/a/work/directory examples/env.sh

The working directory will contain:

* A Python virtual environment
* A basic Spark configuration pointing to directories within the working
directory
* An environment script to establish the setup

To use the resulting working environment:

.. code:: shell

. /path/to/a/work/directory/env.sh

Spark deployment on allocations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Within a cluster allocation, the script ``sm_cluster`` can be used to start
a Spark cluster. The script will be automatically installed by `pip`. To
use it, pass either a working directory containing an environment or
specify them separately:

.. code:: shell

sm_cluster startup $WORKDIR
sm_cluster startup $WORKDIR /path/to/some/env.sh

Similar, to stop a cluster (not necessary with slurm):

.. code:: shell

sm_cluster shutdown $WORKDIR
sm_cluster shutdown $WORKDIR /path/to/some/env.sh

Spark applications then can connect to a master found via:

.. code:: shell

cat $WORKDIR/spark_master

TL;DR on BlueBrain 5
~~~~~~~~~~~~~~~~~~~~

Setup a Spark environment in your current shell, and point `WORKDIR` to a
shared directory. `SPARK_HOME` needs to be in your environment and point to
your Spark installation. By default, only a file with the Spark master and
the cluster launch script will be copied to `WORKDIR`. Then submit a
cluster with:

.. code:: shell

sbatch -A proj16 -t 24:00:00 -N4 --exclusive -C nvme $(which sm_cluster) startup $WORKDIR


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sparkmanager-0.5.0.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

sparkmanager-0.5.0-py2.py3-none-any.whl (9.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file sparkmanager-0.5.0.tar.gz.

File metadata

File hashes

Hashes for sparkmanager-0.5.0.tar.gz
Algorithm Hash digest
SHA256 b32b4a2acbce01f3ae4bd08585a28b41066c88649885ff7359106ba844f559b9
MD5 0f5e1ca986e22c97e9cd756c7c78f514
BLAKE2b-256 2e6328ab28b40436afaf1fd696a7fab12bb69f929972af9d91639ad6fbad286a

See more details on using hashes here.

File details

Details for the file sparkmanager-0.5.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for sparkmanager-0.5.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c029ef509846052e23ae2c54fad62b98263ea87bc7a76d40e757c416053ff96a
MD5 3a0c8e1b1ef7eeba952920169a943dcf
BLAKE2b-256 ff75e3bc9c8bd93192fc337f42eef978c387416d21453484d56df098ce984dc3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page