Skip to main content

Sparse convolution in python using Toeplitz convolution matrix multiplication.

Project description

sparse_convolution

Sparse convolution in python.
Uses Toeplitz convolutional matrix multiplication to perform sparse convolution.
This allows for extremely fast convolution when:

  • The kernel is small (<= 30x30)
  • The input array is sparse (<= 1% density)
  • Many arrays are convolved with the same kernel

Install:

git clone https://github.com/RichieHakim/sparse_convolution
cd sparse_convolution
pip install -e .

Basic usage:

Convolve a single sparse 2D array with a 2D kernel.

import sparse_convolution as sc
import numpy as np
import scipy.sparse

# Create a single sparse matrix
A = scipy.sparse.rand(100, 100, density=0.1)

# Create a dense kernel
B = np.random.rand(3, 3)

# Prepare class
conv = Toeplitz_convolution2d(
    x_shape=A.shape,
    k=B,
    mode='same',
    dtype=np.float32,
)

# Convolve
C = conv(
    x=A,
    batching=False,
    mode='same',
).toarray()

Batching usage:

Convolve multiple sparse 2D arrays with a 2D kernel.
The input arrays must be reshaped into flattened vectors and stacked into a single sparse array of shape: (n_arrays, height * width).

import sparse_convolution as sc
import numpy as np
import scipy.sparse

# Create multiple sparse matrices
# note that the shape of A will be (3, 100**2)
A = scipy.sparse.vstack([
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
]).tocsr()

# Create a dense kernel
B = np.random.rand(3, 3)

# Prepare class
conv = sc.Toeplitz_convolution2d(
    x_shape=(100, 100),  # note that the input shape here is (100, 100)
    k=B,
    mode='same',
    dtype=np.float32,
)

# Convolve
C = conv(
    x=A,
    batching=True,
    mode='same',
)

# Reshape the output back to (3, 100, 100)
C_reshaped = np.stack([c.reshape(100, 100).toarray() for c in C], axis=0)

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sparse_convolution-0.1.1.tar.gz (6.9 kB view hashes)

Uploaded Source

Built Distribution

sparse_convolution-0.1.1-py3-none-any.whl (5.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page