Marching cubes on sparse matrices
Project description
sparse-cubes
Marching cubes for sparse matrices - i.e. (N, 3)
voxel data.
Running marching cubes directly on sparse voxels is faster and importantly much
more memory efficient than converting to a 3d matrix and using the implementation
in e.g. sklearn
.
The only dependencies are numpy
and trimesh
. Will use fastremap
if present.
Install
pip3 install git+https://github.com/navis-org/sparse-cubes.git
Usage
>>> import sparsecubes as sc
>>> import numpy as np
>>> voxels = np.array([[0, 0, 0], [0, 0, 1]])
>>> m = sc.marching_cubes(voxels)
>>> m
<trimesh.Trimesh(vertices.shape=(12, 3), faces.shape=(20, 3))>
>>> m.is_winding_consistent
True
Notes
- The mesh might have non-manifold edges. Trimesh will report these meshes as not watertight but in the very literal definition they do hold water.
- Currently only full edges.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sparse-cubes-0.1.0.tar.gz
(18.2 kB
view details)
Built Distribution
File details
Details for the file sparse-cubes-0.1.0.tar.gz
.
File metadata
- Download URL: sparse-cubes-0.1.0.tar.gz
- Upload date:
- Size: 18.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | effd416e51c65c607d874bc57b6a660e0d325845402226aba1ad788ac2b68ac1 |
|
MD5 | 031e4a169c2ce25c63212393fcce6720 |
|
BLAKE2b-256 | 485511e97c5f27fcbe3dd0e4ea3e015cb74ac6ef110f16a67170731254660732 |
Provenance
File details
Details for the file sparse_cubes-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: sparse_cubes-0.1.0-py3-none-any.whl
- Upload date:
- Size: 17.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45e10479de70ecfe02a0449f131d92c58a06da2119c07dfc716d20b04a179604 |
|
MD5 | 4450b74b52d847eaa54c8a1f64dd122f |
|
BLAKE2b-256 | b2385677bd83792e6fb4fbe2964e774fe4c12bf6a748e600ee060e1675f7b61d |