Efficient forward- and reverse-mode sparse Jacobians using Jax.
Project description
sparsejac: Efficient forward- and reverse-mode sparse Jacobians using Jax.
v0.1.3
Sparse Jacobians are frequently encountered in the simulation of physical systems. Jax tranformations jacfwd
and jacrev
make it easy to compute dense Jacobians, but these are wasteful when the Jacobian is sparse. sparsejac
provides a function to more efficiently compute the Jacobian if its sparsity is known. It makes use of the recently-introduced jax.experimental.sparse
module.
Install
pip install sparsejac
Example
A trivial example with a diagonal Jacobian follows:
fn = lambda x: x**2
x = jax.random.uniform(jax.random.PRNGKey(0), shape=(10000,))
@jax.jit
def sparse_jacrev_fn(x):
with jax.ensure_compile_time_eval():
sparsity = jax.experimental.sparse.BCOO.fromdense(jnp.eye(10000))
jacrev_fn = sparsejac.jacrev(fn, sparsity=sparsity)
return jacrev_fn(x)
dense_jacrev_fn = jax.jit(jax.jacrev(fn))
assert jnp.all(sparse_jacrev_fn(x).todense() == dense_jacrev_fn(x))
%timeit sparse_jacrev_fn(x).block_until_ready()
%timeit dense_jacrev_fn(x).block_until_ready()
And, the performance improvement can easily be seen:
93.1 µs ± 17.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
182 ms ± 26.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sparsejac-0.1.3.tar.gz
.
File metadata
- Download URL: sparsejac-0.1.3.tar.gz
- Upload date:
- Size: 8.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8aee7fcd1834ebbd1414000111eef9882622ace346719175a02f7f6d4141edeb |
|
MD5 | 69ee91e1140e2d9a9a101347b101bca9 |
|
BLAKE2b-256 | be2e2f666e974d3566cd2a6276d465d10f829e3583f927c301cb8e20d5848838 |
File details
Details for the file sparsejac-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: sparsejac-0.1.3-py3-none-any.whl
- Upload date:
- Size: 6.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0016f226ebec7e4173d41c2d8b7d97c6904f5d327b5db53ce3cd72a6d63eba73 |
|
MD5 | 4721dee8231f1876c5837ac4a1730297 |
|
BLAKE2b-256 | 9bdcb838506896332e920764d7898ec0c33879b9eb8ef39f782f3eb656d57dae |