Skip to main content

Modern sparse linear regression

Project description

https://travis-ci.org/Ohjeah/sparsereg.svg?branch=master https://badge.fury.io/py/sparsereg.svg https://codecov.io/gh/Ohjeah/sparsereg/branch/master/graph/badge.svg https://zenodo.org/badge/80389199.svg

sparsereg is a collection of modern sparse (regularized) linear regression algorithms.

Implemented algorithms

  • Mcconaghy, T. (2011). FFX: Fast, Scalable, Deterministic Symbolic Regression Technology. Genetic Programming Theory and Practice IX, 235-260. DOI: 10.1007/978-1-4614-1770-5_13

  • Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. “Discovering governing equations from data by sparse identification of nonlinear dynamical systems.” Proceedings of the National Academy of Sciences 113.15 (2016): 3932-3937. DOI: 10.1073/pnas.1517384113

  • Bouchard, Kristofer E. “Bootstrapped Adaptive Threshold Selection for Statistical Model Selection and Estimation.” arXiv preprint arXiv:1505.03511 (2015).

  • Ignacio Arnaldo, Una-May O’Reilly, and Kalyan Veeramachaneni. “Building Predictive Models via Feature Synthesis.” In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO ‘15), Sara Silva (Ed.). ACM, New York, NY, USA, 983-990. DOI: 10.1145/2739480.2754693

Installation

pip install sparsereg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sparsereg-0.8.1.tar.gz (30.7 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page