Skip to main content

Generate different types of sparsity pattern for sparse matrices.

Project description

PyPI version PyPi downloads DOI sparsity-pattern Total alerts Language grade: Python

sparsity-pattern

Generate different types of sparsity pattern for sparse matrices.

Installation

The sparsity-pattern git repo is available as PyPi package

pip install sparsity-pattern
pip install git+ssh://git@github.com/ulf1/sparsity-pattern.git

Usage

The block-diagonal pattern for tensorflow

import sparsity_pattern
import tensorflow as tf

n_rows, n_cols = 10, 12
idx = sparsity_pattern.get('block', min(n_rows, n_cols), block_sizes=[3, 1, 2])

mat = tf.sparse.SparseTensor(
    dense_shape=(n_rows, n_cols),
    indices=tf.convert_to_tensor(idx, dtype=tf.int64),
    values=range(1, len(idx)+1))

print(tf.sparse.to_dense(mat))

The circle pattern for pytorch

import sparsity_pattern
import torch

n_rows, n_cols = 5, 7
idx = sparsity_pattern.get('circle', min(n_rows, n_cols), offsets=[1, 2])

mat = torch.sparse_coo_tensor(
    indices=torch.tensor(idx).transpose(0, 1),
    values=range(1, len(idx)+1),
    size=[n_rows, n_cols])

print(mat.to_dense())

The triu pattern for scipy

import sparsity_pattern
import scipy.sparse
import numpy as np

n, k = 4, -1
idx = sparsity_pattern.get('triu', n, k)
idx_rows, idx_cols = np.array(idx)[:, 0], np.array(idx)[:, 1]
mat = scipy.sparse.lil_matrix((n, n), dtype=np.int64)
mat[idx_rows, idx_cols] = range(1, len(idx)+1)

print(mat.todense())

Check the examples folder for more notebooks.

Appendix

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements-dev.txt
pip3 install -r requirements-demo.txt

(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab

  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')

  • Run Unit Tests: pytest

Publish

pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

License and citation

This software is licensed under Apache License 2.0 and archived on Zenodo. If you would like to cite the software, please use this DOI: 10.5281/zenodo.4357290.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sparsity-pattern-0.4.5.tar.gz (12.5 kB view details)

Uploaded Source

File details

Details for the file sparsity-pattern-0.4.5.tar.gz.

File metadata

  • Download URL: sparsity-pattern-0.4.5.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/None requests/2.28.1 setuptools/59.6.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.10.4

File hashes

Hashes for sparsity-pattern-0.4.5.tar.gz
Algorithm Hash digest
SHA256 561702e3d7c53bdb38029935f1633f011b2656e8fe5a26a4adaa3eddcc3d26e0
MD5 879bebb19e34ff21fbe1fc4f8ed60cc3
BLAKE2b-256 2d65b89c48c92002e7e5becfd836c4604c5f285413c2b47b1e7b6ec9423f5b64

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page