Python Wrapper for Superparamagnetic Clustering
Project description
spclustering: Super Paramagnetic Clustering Wrapper
This is a Python Ctypes wrapper for the original SPC algorithm (available in Eytan Domany repository). The SPC code was edited to work as a shared library, reduce disk usage and improve speed and interface with Python. Two methods are included to select clusters, see Cluster Selection below. The method WC1 select clusters at one particular temperature and WC3 (default for .fit() method) selects multiple temperatures prioritizing high temperatures (this method is better to detect more clusters but a bigger number of elements will remain unlabeled).
How to install spclustering
pip install spclustering
How to build spclustering
The original code requires gcc and makefile. For Windows I recommend TDM-GCC.
How to use spclustering
from spclustering import SPC, plot_temperature_plot
import matplotlib.pyplot as plt
import numpy as np
rng = np.random.RandomState(0)
cl1 = rng.multivariate_normal([8, 8], [[4,0],[0,3]], size=800)
cl2 = rng.multivariate_normal([0,0], [[3,0],[0,2]], size=2000)
cl3 = rng.multivariate_normal([5,5], [[0.5,0.2],[0.2,0.6]], size=300)
cl4 = rng.multivariate_normal([-3,-2.5], [[0.5,0],[0,0.6]], size=500)
gt = [cl1,cl2,cl3,cl4]
#plot clusters
plt.figure()
for cl in gt:
plt.plot(*cl.T,marker='.',linestyle='',markersize=3)
plt.title('Ground Truth')
plt.grid()
plt.show()
#run the algorithm. The fit method applied the cluster selection described in Waveclus 3.
#The method fit_WC1 is the alternative using the original Waveclus 1 temperature selection.
data = np.concatenate(gt)
clustering = SPC(mintemp=0,maxtemp=0.2)
labels, metadata = clustering.fit(data,min_clus=150,return_metadata=True)
#It is posible to show a temperature map using the optional output metadata
plot_temperature_plot(metadata)
plt.show()
#To show the assigned labels:
plt.figure()
for c in np.unique(labels):
if c==0:
plt.plot(*data[labels==c,:].T,marker='.',color='k',linestyle='',markersize=3)
else:
plt.plot(*data[labels==c,:].T,marker='.',linestyle='',markersize=3)
plt.grid()
plt.title('Results')
plt.show()
Limitations and Changes
-
It runs with a data matrix [npoints, ndims] as input. Running the clustering from a distance matrix is not implemented.
-
Only the main parameters and flags are implemented.
-
Tmax (stop temperature) is not included in the temperature array (similar to Python
range
). -
Included WriteEdges boolean parameter (defaul False). If True, the *.edges/*.mst/*.K file is created as in the original SPC. Added aswell PrintParam parameter in the legacy SW.c code.
-
Reduces/removes console ouputs.
Citations
Original SPC
Blatt, M., Wiseman, S., & Domany, E. (1996). Superparamagnetic clustering of data. Physical review letters, 76(18), 3251.
Cluster Selection
Waveclus 1 (WC1)
Quian Quiroga R, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural computation 16: 1661–1687, 2004.
Waveclus 3 (WC3)
Chaure FJ, Rey HG, Quian Quiroga R. A novel and fully automatic spike sorting implementation with variable number of features. J Neurophysiol , 2018. doi:10.1152/jn.00339.2018.
Bibtex
@article{spc,
title={Superparamagnetic clustering of data},
author={Blatt, Marcelo and Wiseman, Shai and Domany, Eytan},
journal={Physical review letters},
volume={76},
number={18},
pages={3251},
year={1996},
publisher={APS}
}
@article{WC1,
title = {Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering},
volume = {16},
number = {8},
journal = {Neural computation},
author = {Quian Quiroga, R and Nadasdy, Zoltan and Ben-Shaul, Yoram},
year = {2004},
pages = {1661--1687},
file = {48b6995f327440100e0d7382ff2652c17c6f.pdf:I\:\\My Drive\\zotero\\storage\\GXTC9KF8\\48b6995f327440100e0d7382ff2652c17c6f.pdf:application/pdf},
}
@article{WC3,
title = {A novel and fully automatic spike sorting implementation with variable number of features},
issn = {1522-1598},
doi = {10.1152/jn.00339.2018},
journal = {Journal of Neurophysiology},
author = {Chaure, Fernando Julian and Rey, Hernan Gonzalo and Quian Quiroga, Rodrigo},
month = jul,
year = {2018},
pmid = {29995603},
keywords = {neurophysiology, single-neuron recordings, spike sorting, tetrode}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file spclustering-0.8.0.tar.gz
.
File metadata
- Download URL: spclustering-0.8.0.tar.gz
- Upload date:
- Size: 224.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d9b0d311df9914f7df9fed3bede2595840a63c33fa475b7f066bcf3dc175c11 |
|
MD5 | 9c5b58f71d869c23e561ef5c8a0da6e8 |
|
BLAKE2b-256 | a9a315b29697bf3d89824614e2994e4e92ee98c6fa986faea4c8ebd54cf85aeb |
File details
Details for the file spclustering-0.8.0-py3-none-win_amd64.whl
.
File metadata
- Download URL: spclustering-0.8.0-py3-none-win_amd64.whl
- Upload date:
- Size: 229.0 kB
- Tags: Python 3, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f6785778808ab7518023ba8b9ef68e2b430a7ca0316426dc96e2b13c1e22a5a |
|
MD5 | 84b81fb3cf5c7bfb0bfdfafc0d36cd81 |
|
BLAKE2b-256 | aaaeb8cdc18cd82cb9e0e68f13cf1b0dc1a969992581f1fdd09835ffa19addbf |
File details
Details for the file spclustering-0.8.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: spclustering-0.8.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 67.3 kB
- Tags: Python 3, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a10d5dafc8e4eb714116b8704e4b14308f4f2e81db9f2d3de5e0fdc9001bb7ac |
|
MD5 | 51756956c30461994b139b172d6d9343 |
|
BLAKE2b-256 | 176135c627703a7de2be94724665831dfa76259662c0e6c145201be77eac07e0 |