Skip to main content

Python Wrapper for Superparamagnetic Clustering

Project description

spclustering: Super Paramagnetic Clustering Wrapper

This is a Python Ctypes wrapper for the original SPC algorithm (available in Eytan Domany repository). The SPC code was edited to work as a shared library, reduce disk usage and improve speed and interface with Python. Two methods are included to select clusters, see Cluster Selection below. The method WC1 select clusters at one particular temperature and WC3 (default for .fit() method) selects multiple temperatures prioritizing high temperatures (this method is better to detect more clusters but a bigger number of elements will remain unlabeled).

How to install spclustering

pip install spclustering

How to build spclustering

The original code requires gcc and makefile. For Windows I recommend TDM-GCC.

How to use spclustering

from spclustering import SPC, plot_temperature_plot
import matplotlib.pyplot as plt
import numpy as np

rng = np.random.RandomState(0)

cl1 = rng.multivariate_normal([8, 8], [[4,0],[0,3]], size=800)
cl2 = rng.multivariate_normal([0,0], [[3,0],[0,2]], size=2000)
cl3 = rng.multivariate_normal([5,5], [[0.5,0.2],[0.2,0.6]], size=300)
cl4 = rng.multivariate_normal([-3,-2.5], [[0.5,0],[0,0.6]], size=500)
gt = [cl1,cl2,cl3,cl4]

#plot clusters
plt.figure()

for cl in gt:
    plt.plot(*cl.T,marker='.',linestyle='',markersize=3)
plt.title('Ground Truth')
plt.grid()
plt.show()

output_gt

#run the algorithm. The fit method applied the cluster selection described in Waveclus 3. 
#The method fit_WC1 is the alternative using the original Waveclus 1 temperature selection.
data = np.concatenate(gt)
clustering = SPC(mintemp=0,maxtemp=0.2)
labels, metadata = clustering.fit(data,min_clus=150,return_metadata=True)

#It is posible to show a temperature map using the optional output metadata
plot_temperature_plot(metadata)
plt.show()

temp_map

#To show the assigned labels:
plt.figure()
for c in np.unique(labels):
    if c==0:
        plt.plot(*data[labels==c,:].T,marker='.',color='k',linestyle='',markersize=3)
    else:
        plt.plot(*data[labels==c,:].T,marker='.',linestyle='',markersize=3)
plt.grid()
plt.title('Results')
plt.show()

output_results

Limitations and Changes

  • It runs with a data matrix [npoints, ndims] as input. Running the clustering from a distance matrix is not implemented.

  • Only the main parameters and flags are implemented.

  • Tmax (stop temperature) is not included in the temperature array (similar to Python range).

  • Included WriteEdges boolean parameter (defaul False). If True, the *.edges/*.mst/*.K file is created as in the original SPC. Added aswell PrintParam parameter in the legacy SW.c code.

  • Reduces/removes console ouputs.

Citations

Original SPC

Blatt, M., Wiseman, S., & Domany, E. (1996). Superparamagnetic clustering of data. Physical review letters, 76(18), 3251.

Cluster Selection

Waveclus 1 (WC1)

Quian Quiroga R, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural computation 16: 1661–1687, 2004.

Waveclus 3 (WC3)

Chaure FJ, Rey HG, Quian Quiroga R. A novel and fully automatic spike sorting implementation with variable number of features. J Neurophysiol , 2018. doi:10.1152/jn.00339.2018.

Bibtex

@article{spc,
  title={Superparamagnetic clustering of data},
  author={Blatt, Marcelo and Wiseman, Shai and Domany, Eytan},
  journal={Physical review letters},
  volume={76},
  number={18},
  pages={3251},
  year={1996},
  publisher={APS}
}

@article{WC1,
	title = {Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering},
	volume = {16},
	number = {8},
	journal = {Neural computation},
	author = {Quian Quiroga, R and Nadasdy, Zoltan and Ben-Shaul, Yoram},
	year = {2004},
	pages = {1661--1687},
	file = {48b6995f327440100e0d7382ff2652c17c6f.pdf:I\:\\My Drive\\zotero\\storage\\GXTC9KF8\\48b6995f327440100e0d7382ff2652c17c6f.pdf:application/pdf},
}

@article{WC3,
	title = {A novel and fully automatic spike sorting implementation with variable number of features},
	issn = {1522-1598},
	doi = {10.1152/jn.00339.2018},
	journal = {Journal of Neurophysiology},
	author = {Chaure, Fernando Julian and Rey, Hernan Gonzalo and Quian Quiroga, Rodrigo},
	month = jul,
	year = {2018},
	pmid = {29995603},
	keywords = {neurophysiology, single-neuron recordings, spike sorting, tetrode}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spclustering-0.8.0.tar.gz (224.9 kB view details)

Uploaded Source

Built Distributions

spclustering-0.8.0-py3-none-win_amd64.whl (229.0 kB view details)

Uploaded Python 3 Windows x86-64

spclustering-0.8.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (67.3 kB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

File details

Details for the file spclustering-0.8.0.tar.gz.

File metadata

  • Download URL: spclustering-0.8.0.tar.gz
  • Upload date:
  • Size: 224.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for spclustering-0.8.0.tar.gz
Algorithm Hash digest
SHA256 5d9b0d311df9914f7df9fed3bede2595840a63c33fa475b7f066bcf3dc175c11
MD5 9c5b58f71d869c23e561ef5c8a0da6e8
BLAKE2b-256 a9a315b29697bf3d89824614e2994e4e92ee98c6fa986faea4c8ebd54cf85aeb

See more details on using hashes here.

File details

Details for the file spclustering-0.8.0-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for spclustering-0.8.0-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 2f6785778808ab7518023ba8b9ef68e2b430a7ca0316426dc96e2b13c1e22a5a
MD5 84b81fb3cf5c7bfb0bfdfafc0d36cd81
BLAKE2b-256 aaaeb8cdc18cd82cb9e0e68f13cf1b0dc1a969992581f1fdd09835ffa19addbf

See more details on using hashes here.

File details

Details for the file spclustering-0.8.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spclustering-0.8.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a10d5dafc8e4eb714116b8704e4b14308f4f2e81db9f2d3de5e0fdc9001bb7ac
MD5 51756956c30461994b139b172d6d9343
BLAKE2b-256 176135c627703a7de2be94724665831dfa76259662c0e6c145201be77eac07e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page