Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-0.10.0-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-0.10.0-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-0.10.0-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

spectacularAI-0.10.0-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

spectacularAI-0.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2dc65b6dfbc652b86c19c651b0992a8bd14d8f3c86e00308327b9d7e89c9ff5
MD5 c6b019d46a0a802c07bec33df9d2d64e
BLAKE2b-256 28c48aa06f70385e06be0bb99aad51817727c4c0f2333637e1afe96a8db8086c

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 265d05488763e48c2c46962d888c0df77d473c30155d9cdacf45320ea756529d
MD5 6919335b7a790d3f726c5099a335d98e
BLAKE2b-256 73aa3f50f4b0b58abe8eba762c6026331cfdb3fb3f981ec6e73d642fc5547232

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04ff85c7fca05237a44814aeb138a6b8c312b361898e7ede1a6b4dd9dec1d460
MD5 2d6d999393f6823d6ccf91e41abf26fa
BLAKE2b-256 d6c2672d1a60f277be2bb5539455c8b1ff87ebfd512572253e65dc068b1a7ae8

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3376ad62597798a0197903b2324884e9aee134d06f62f0e2a4be09a2075c3e7b
MD5 cb7c8c29760537b817b7e28ea8ad31a9
BLAKE2b-256 6741700ee3a350287a6b50e251f8d851aec5156dfe7f9df36b5d852d9935d2bb

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 885c37d42c92b2abe2075afa69b682def0149ecb9e65a67d9e7eaf4c34a26a64
MD5 ea2cf466732950166a4d81d41ce34278
BLAKE2b-256 4019b6cce00809e51993686f9a128b1c4d2dabfd4b53eeedf1e8baa32e458bb4

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 626b440518a76da409c543a01e191f5de1e8ebb7db1d7511d3ad0c759f0d226a
MD5 96d221702ac6d6182aba6da3c821dfed
BLAKE2b-256 74cada1cba5ba10283ae4c0518f4813987f1a2bcd96feb606848e953bbcab412

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d6840349d17e4eb5d2929c80efa69e4a16bda21055082fcd43a00792135e337
MD5 be40d0948e6b868adfde12067960f09b
BLAKE2b-256 c5ccf81cd2ac3d0a1a846b8ecf75afde92d6c981a917d7ce876f366e494d2a3e

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.10.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.10.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cc32f659c8dad7e9abdea9238f592005c5c030b5d1f91050dd59ed0c2604f3cf
MD5 009ce4db4f3e61663a3d1ef413bc419b
BLAKE2b-256 cd89a98af116971b8d46ada2cd4aa27ea5b35f8eb9252949a1ee94fd0e07e603

See more details on using hashes here.

File details

Details for the file spectacularAI-0.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3f32ff250098d15a36683187712b1dd3b362be4bdc26674f6ff893d112075d6
MD5 7eb0f40873cc2650ee0be6828e32c2ce
BLAKE2b-256 fea655ce8f1e862c6ea074408451b9a93138aba7e91c95b075651a44fbfb9655

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page