Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-0.13.0-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-0.13.0-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-0.13.0-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-0.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-0.13.0-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

spectacularAI-0.13.0-cp36-cp36m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

spectacularAI-0.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-0.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8998f074a6b9b677d3a32d60920fe1be705e49d7d33be34487d92e57d0420ddb
MD5 73c03b227e056bd302e0da1413e0582c
BLAKE2b-256 5b0c2d00aeb7c3c734cfbaed79e8e103987a7bf19c7657bf543d412cf657afda

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5256ad2d0360be2e13167289fb995471e23ea189d28714a64734edd2c4fe8bbb
MD5 6eb96e5a47c387a039ebf98eeda39014
BLAKE2b-256 b8b0f8c7292c20db715775af94484537c4c64c87087b0debd75e94204487be08

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ac109a187d171e0396785b5ef8818d06d9c4d23003c0f3d305b747914e980814
MD5 1a9690fa36292e49fb1c93c4c260a2b3
BLAKE2b-256 22338c1218e05dd7a56fed917f39156c0fb0e5a0871a66ed1554089467e92a57

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8db0be286029039b804af05d86a2a396cb86965a531f36e15b1bc299a359ea71
MD5 e5ce7c3bbe023185a1becd406ab5f00c
BLAKE2b-256 1142198634550e532a3a7e95718aa59042c5dbbdfcccc36e05e39df7bc2f8267

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.13.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f2c12dda76624283ab49aadd84f5adeb6a47626c07546549cc6dc92e7c8123e5
MD5 37c7c79de70d08dfdc9a88de349f5b0f
BLAKE2b-256 4d92873c59df7533d83da2cc541ac332f51f61b0cb897cc38397c906fc1b3460

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1882f0b7255d52785ddef2d1be34813868efcfecae4d56535a903bf6085c0c0f
MD5 dfe48470ab40e3db33037c0144a20c3d
BLAKE2b-256 561364c4d8680d0881442e8223ccb8800dfff2f434082d1ba29c193788cc2f6a

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.13.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 76c44ce859a2defec984e53e0922bf637435ec8a536493e6fb040fd75e549e79
MD5 dc5d37abc01b91a56aa3f04d9473ad20
BLAKE2b-256 2669f3483bfb3716fd5dbd2273f512e956795ace307d1cbc3b0d64cfcc97a79a

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d721c5f8f7b44887693846eb7a6be97ccc37afb9336e7914a48eaa4e724828e
MD5 de23b7a53d154b0367ae4f12782f46d2
BLAKE2b-256 29d2cc60db483d48ca1d9b976086cbda4a515ce7e495efe3017341e0f2ab850e

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.13.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.13.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 83ed96734332f439301b281298f9b260c2e1c3d9c7fe6d684fa5d65812849ed0
MD5 29d3e3cc389bc216ed2d57366c01fbad
BLAKE2b-256 738fcd9aaed1b8c497e7adab087283f1431a3c49caa32d08bb404e26068139d6

See more details on using hashes here.

File details

Details for the file spectacularAI-0.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.13.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f5ed8393c7d0df4ee206c38c634441dd73bc664bd73a238d2412ce0088572c0
MD5 1fed55d3aea74a503500da4b0f610bab
BLAKE2b-256 5f1b939484449b9a1695d7146d9d011d14f3454fbea2fe570b01c3db6381ab37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page