Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-0.14.0-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-0.14.0-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-0.14.0-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-0.14.0-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

spectacularAI-0.14.0-cp36-cp36m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

spectacularAI-0.14.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-0.14.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.14.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e7dba4845913c725329b2c9659e605ada5c31f4cfd1bd6705bf8c5a898f8ff38
MD5 161edf92a4495faab617707fd0e2ced5
BLAKE2b-256 f5efa229e9e139646da98ab00280aca01198e81897d5ebc289900259f524167b

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76f3d3cdfb148ccfeca6a7b550f45f7d04cc28e42af119fe06a22592a475fe39
MD5 bfd8267db105441a11f66a6ad44c2b8a
BLAKE2b-256 d71a9c53fea0ab58cb221172dce4708472e6fbbe395f87a5e05e2aa5698b17a0

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 33e34e2402dd5e57661173c31dfbd80ec177bb634e04562b986855e7c487504d
MD5 de54d14b093b1181a1779a90831482ad
BLAKE2b-256 48bdc72b3064411b2a9746a12b2c454ffcb2460675808cfb9cc59bc5da838f28

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0d62ad6fa93cebcf7a33b76eed5a1809117e3f82192a244b18917593b927214
MD5 d10646e05b0dfed00063e5bea3437ed7
BLAKE2b-256 5a04db3bb990274585ffe20d915b115723414d966f567b2a966f6110f31a20db

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 12267e9f3d4ebf61d0a6ef70e5da4291697a18b478bd8457fca9e51f9fe06d38
MD5 82d97a5047e827f9d189fe0b537c9c2c
BLAKE2b-256 d8bee6131711888b88680646c4638867d42e5c61600b7aee147197dacac474eb

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfaaf294bda2a81dba5341bcf04b40f35c8015b34fbad92339fdd1511d448155
MD5 3fd383f7e4741a4ae289749c49073834
BLAKE2b-256 56493fe3cc414e3a731be0da45a8c65281bae5ab006e9631f37bbecefa63dce2

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.14.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f8d3eb8a8d170ec131674ec488a8fdc310f9dbcc6b86b08b9fbe331ebb3272db
MD5 67d8e2fa50e739fefc13fcda7dd06e72
BLAKE2b-256 ca25e514d8f1dd899782f43bb10cbb691bc83b0839256ab94aa75ee55d2518cb

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 850cbb5c78843caf5db953fce42e63b57373c279319a53ebccca3bbf31ef05d1
MD5 a72a0b7482fc2d4b5d6a321b3d1acc37
BLAKE2b-256 33178117ff3b2364a386e138da56b1ded31589e7b5d3cc3ae1e55fde3425cb64

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.14.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for spectacularAI-0.14.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bc2f2a29e937efaf2c51838b1cd225813316b2aebb2326856dbec1de44c4e043
MD5 943e12f8f0965686d228bbbf8e8fd900
BLAKE2b-256 10d1f07d2298e8abb574623178a2254261ed81f5d5c2cda64f839aab17b10c6d

See more details on using hashes here.

File details

Details for the file spectacularAI-0.14.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.14.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d2abd5b49a0c5a68da7eda67e80904e8db93810bf111ee5e598524a48738f60
MD5 f2b5187263c173fe89a5ff9d436d2ad9
BLAKE2b-256 06f0821efdbc8f59c713ce755a4afa697c4e4ce43a246a5c035281bb90f51192

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page