Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-0.22.0-cp310-cp310-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-0.22.0-cp39-cp39-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-0.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-0.22.0-cp38-cp38-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-0.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-0.22.0-cp37-cp37m-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-0.22.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-0.22.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.22.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.10.4

File hashes

Hashes for spectacularAI-0.22.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6afe0718f3f7d8b3df4ea1700ad7768605b7e613c01317f1f465b1e74d9cc6cc
MD5 8900bfa4929e19ad8cdfccc0bcb5d780
BLAKE2b-256 383241b147b1f620cf654c7595a232442733b213aad998a676ed382becbe4c3d

See more details on using hashes here.

File details

Details for the file spectacularAI-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 333f397b09d2f06c191b2678558d1772fad4eab22adfed8c8c8936298f7fb424
MD5 edcc13e68be8020b379315361af5e0c2
BLAKE2b-256 64f83209627e8d2d2e4f1b6c248d233125163194c09931d24a06853d1890e35a

See more details on using hashes here.

File details

Details for the file spectacularAI-0.22.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.22.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.10.4

File hashes

Hashes for spectacularAI-0.22.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2df82006de91787e3aeef901077f64641fa12f805efbe11d99f12060457566b6
MD5 002bd0f5eb2024d05c6877f78df15509
BLAKE2b-256 e48b8aa3818f0a89f0d8184af8bd4de1335569d15a610d4adfcdb2de696dff0a

See more details on using hashes here.

File details

Details for the file spectacularAI-0.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9a5f03274f9ebe7484f0af188a634870731e8c6e20d5154642f9e8cd8b9b78d
MD5 d0af9a69f6ea4bddc52a4e9232ad08cf
BLAKE2b-256 899f336639c743d5c53044cdde4bbc7edb00b98ece887bbcde1f104addb1296c

See more details on using hashes here.

File details

Details for the file spectacularAI-0.22.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.22.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.10.4

File hashes

Hashes for spectacularAI-0.22.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7b5770fa696c9ef695ea24ea1d5e7cfe2cb5f8c0bc54d164141df8b7a7f29fb2
MD5 5179441ff260e2a784f227a260d8d05d
BLAKE2b-256 513fe10d51ab998794343833e64b029a9d6a5f289375fa6285028ab0d2f0ca39

See more details on using hashes here.

File details

Details for the file spectacularAI-0.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa24a01f698bd0c615509f3b67277ebc22f9016cb0c3046e0c9dd281ec415cd2
MD5 ca0f0102b0c694a0087799c8ed0ac0e3
BLAKE2b-256 009c97f84b303f34ed52c6836199c52f742371ee8acbcbac0ffadf73d4ce1706

See more details on using hashes here.

File details

Details for the file spectacularAI-0.22.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-0.22.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.10.4

File hashes

Hashes for spectacularAI-0.22.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 acd242fb1fe689f4c3a272efe6f59408846cb311f7c10ab3209f52c1e62adc44
MD5 1045dac003afcf0268cf85069cc99031
BLAKE2b-256 5c0a7c83dc3db33b3162d3f1778896f365b290cad50bd3c5ac3648bf198f72a8

See more details on using hashes here.

File details

Details for the file spectacularAI-0.22.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for spectacularAI-0.22.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10625bc4cfd2188fe426888939527fe658d77b9db26fd0222ed6dbfee7fd0a92
MD5 30910606a12349b28102e9e7b72a000a
BLAKE2b-256 7f37e80caa482b180e9629238315179b9dee10eaa26adcfd5b5360eca8cd0db8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page