Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-1.0.0-cp310-cp310-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-1.0.0-cp39-cp39-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-1.0.0-cp38-cp38-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-1.0.0-cp37-cp37m-win_amd64.whl (3.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 79f74068862c03a76f8cd6a6d13c4a8ffe6a3babdbb381fd5cc4195cabec1f38
MD5 31f280861e7012d553bfdaaa1ce16cb4
BLAKE2b-256 575231b582dd5d489dc484077bb7d414f5bc8f38939b8e333c8cae95ec9fd602

See more details on using hashes here.

File details

Details for the file spectacularAI-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf44d1b26688891f9a28b92bd0a0199353b6cd9f20accc5d0450a77699f140df
MD5 dcf18d634c2893c96d5e61d5b43e328e
BLAKE2b-256 aba5ce53910d258185337190f6525adb170be5291ea72755df3e3e6e29f42395

See more details on using hashes here.

File details

Details for the file spectacularAI-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8dc2b71d66d12151dd27f8561cac641cce45577fb6dd53623ba3595782f47fef
MD5 50377755a7ad15178e173b4fae6393d7
BLAKE2b-256 48e03d7002a889d32b65fb48d467b6eeb4ad7e26e5cd2b37fd1918d5e414448f

See more details on using hashes here.

File details

Details for the file spectacularAI-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50a06fe81bf545249cecd525d424cae8264a639654553f9e16b67ed32d038499
MD5 7662b9b8f0974bcac79a86b8f0a925ce
BLAKE2b-256 b4aa25602a5dc29168913d3a7a26db6525d5a79a9fc52f2d7eb1e9c9be18701e

See more details on using hashes here.

File details

Details for the file spectacularAI-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5e5577b280d56d729e96e5ab1bb81c41861584a2b8caa590ccc1c6158e45579b
MD5 7ff4ea9c91dcc03205ab868af8462462
BLAKE2b-256 fff27c0114ecb56dfb4452fac628a5469a6979914e729d817c7e0774980f5ff9

See more details on using hashes here.

File details

Details for the file spectacularAI-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d8aede08d90bdd0b1dbe5a84752458cf5cbdf68c27deb905afef36e1f895fb8
MD5 32ede3eb92d2f032a1709707bbefcf67
BLAKE2b-256 dda3e52b47efd3392b6eb89227d4c9744945d336bd47243f8429ed58411bb291

See more details on using hashes here.

File details

Details for the file spectacularAI-1.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 16d0717ab068047959ee5fc523018739fa4718421a38c7b3ce1d82498337ef06
MD5 00af9c187993fb1685646501258c3eb2
BLAKE2b-256 727c5aefb04979094834beb7e62aa6e21e4fe3972653e0ce5612ecd5e71703b6

See more details on using hashes here.

File details

Details for the file spectacularAI-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6c8b24a1b86e484ae96596c17fca72d52a4ccbf29d0fdeade9d44735f9fbb0d
MD5 f3b99b8744077967c01110cf16d80a91
BLAKE2b-256 13280dd4e315a8b4fd3440df5cdd26e623f75264fda062a23e857c68c014beb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page