Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-1.12.1-cp310-cp310-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-1.12.1-cp39-cp39-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-1.12.1-cp38-cp38-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-1.12.1-cp37-cp37m-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-1.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-1.12.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bce389dd8f07b82d9b6b5c02b04d4576b89b289148a549155a9ea567c62a7513
MD5 5d764e28735924bf55ff9594bc0307c2
BLAKE2b-256 7da31c9844145aec4aa11e5bdf43e93afc29be69ce3503674326a688fa1870e1

See more details on using hashes here.

File details

Details for the file spectacularAI-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 251b1d44e36d5d18a6243384a4691c890ea50709a4be2559944c59800ed4bca0
MD5 0bf2492e39a68df85db06231ae945709
BLAKE2b-256 e246f645d44be4bafdbe184f9e50609f44259768165dcd3892e7a6b8e5eaa774

See more details on using hashes here.

File details

Details for the file spectacularAI-1.12.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6d98185f059d1ff71efb747ad8150da6a2541ad2d62fafee22db229134b45322
MD5 d28b59bff6e5c1692dc29c7da9ae0bb8
BLAKE2b-256 530c63812e674f60c8d8acc888d13f83821045217f2f5c179765b2cf51f0443c

See more details on using hashes here.

File details

Details for the file spectacularAI-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d44de5b5e9f77a373632b9febf243bdf30c14d73ce6dc72803ece79c5eb9079d
MD5 2bb961c651a118ba346552b49e745ab5
BLAKE2b-256 370a9de43fa3ddea5fff21a9ec01b1cdf2d1958ce7c357a9922f9d56f2adaa90

See more details on using hashes here.

File details

Details for the file spectacularAI-1.12.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b6d27ae0df9500fec0273ac2c3926bdcd6eeab74ac44108009c3818f60d7c658
MD5 84910379835b81f6695bc994ee7170f7
BLAKE2b-256 8cf879a18cd50425bbe03baf35cab95da2bcb926d2f605ade2fcc192888acdf1

See more details on using hashes here.

File details

Details for the file spectacularAI-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 249c50679f078c75c86c23fc9e7c92d34bba723c621b707c79ae344015d594ed
MD5 d29a9e01963ce4a4a835e030c3e1a5f4
BLAKE2b-256 d9607a23ca3ba1f27e27a4398b899d73fd4b1fc9e03dc43a8e8b2611c8036f42

See more details on using hashes here.

File details

Details for the file spectacularAI-1.12.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b039b65a06a5cfb18a7c073ec8fd5e065022cc645ad903e645ca544e7b7a0be8
MD5 22eeccf2f2dec6be9ea943abad6378ee
BLAKE2b-256 0c1407fe8913c6b6572c2b1ed6648c8b606e0f410150e4837bf8252999ea5395

See more details on using hashes here.

File details

Details for the file spectacularAI-1.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.12.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6ffd09f887cc39df50f5fff4320a552fa7e46a16308bd126b118cd2a6736b9a
MD5 0c94093d3d618eb88627d3432913be21
BLAKE2b-256 12a7789e394d403a6d5f9627b7ae5b2fbf8f5794265c53731f1f9ee2d3f1e8b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page