Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-1.13.1-cp311-cp311-win_amd64.whl (6.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

spectacularAI-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

spectacularAI-1.13.1-cp310-cp310-win_amd64.whl (6.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-1.13.1-cp39-cp39-win_amd64.whl (6.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-1.13.1-cp38-cp38-win_amd64.whl (6.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-1.13.1-cp37-cp37m-win_amd64.whl (6.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-1.13.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 359a15d21b4cc7bcd89ccab25fa55f017e91ba723f21fccd1243cf1a8739f551
MD5 4c7c2afe1780c74a12c24836b805a4ca
BLAKE2b-256 f7645ae547fa03dd8826ab2ed7f091613c354cd5d12121a9822e5c7df29821cb

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49d51f7f5984d6a64a67b83dc2e2b5e07b7a848a63ebd98c118da423ad1622e3
MD5 ee76272585e2f63aa6fd8ee8fd5381f1
BLAKE2b-256 11177341c57d68ddb02a7b66837b69d5f98e7f1b0ea90000c7e3ce1ebcc03020

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e86bb84fe4190c3590f62cc7d0bfd02f496ddc9135da3a11736ea3ea55029d6e
MD5 263ae84f3f07ae1ef7e21ebf43be218c
BLAKE2b-256 4e4a7f06afaf0bfe8c0de72c49e8632a1eaa90457ccc76b50cec316b3da1e572

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4316ef9375663eee892a1c03b3fdb5a1196316cdd265465d53243894ad577fd3
MD5 c581c0a7ccbc4e7cd77918ebe1242089
BLAKE2b-256 8a710c0584b3e68ab324152528ca02f147a4e0ecc5831b147381300fb278ccd7

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0c37603380e47a4f19c530eb93c7e1d0eb8a515d13aaacaca9e35012e01bbda2
MD5 71c25a188bcc4d9d59738b54935ff5ac
BLAKE2b-256 2bc3564aef8d430d351c8aeffa0a18a8a256755d2039e68eba9c68c476640738

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e4177b237f184dd71ff46737cf23d662767c923207c5ed39fef49bc72a92548
MD5 8c5ee453a01780d3124929208bd7a79d
BLAKE2b-256 66ca70d89feadf2f6ff565549ce40386b6dc0ee84a5b6c44188db0693fa4fa91

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 beaf3fee2f7e27211edd573bd61a57e94e8f93f7c2d96177a5a547b9f87d7082
MD5 e63ea8cc8a59543e9f11f28f9fa1a134
BLAKE2b-256 c9764c8395a8bb77a510cd33e6a559e73a12468d7135abf6e75f7d92c5a06e36

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9be7159ec825568ff85406cfb159898d862e84d4ba249541da7c43a43edcb3b
MD5 a4df784fc962bfe4bd67cb80ae7c92a2
BLAKE2b-256 12c3acd7e6fdf3a3efc958db79e2d9709ecaf75cd4a79e3385bbfd2f34349209

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0f34735d774a406bfe1795ddcb11f7c606ead6c4520655ea9e621e312120cd28
MD5 a162e6bd5af7c318ff9e5e5ad0c9852f
BLAKE2b-256 06ba2126b3703dbde39b926f96622e001396224fb638609015dfca4fa0203d67

See more details on using hashes here.

File details

Details for the file spectacularAI-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for spectacularAI-1.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b8ab09d0a349e2e895052703e262c9cb102dfffa3a412f23c79707faa43d129
MD5 81d5cb62229ede78e920cec9f75385f3
BLAKE2b-256 b1d718530a41b5cd7db6dec2a457f2d3e23bb50e60b3a4031c7d89d1c2c2b187

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page