Skip to main content

Spectacular AI Python library

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial SLAM (VISLAM), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (custom devices), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-1.30.0-cp311-cp311-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

spectacularAI-1.30.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

spectacularAI-1.30.0-cp310-cp310-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-1.30.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-1.30.0-cp39-cp39-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-1.30.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-1.30.0-cp38-cp38-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-1.30.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-1.30.0-cp37-cp37m-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-1.30.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-1.30.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 39a79f9775080002db7587f732194b2f7f2a1bff4ddc40015783ddacd389537a
MD5 82d3f729fde8e19ef3c1f17f4f712096
BLAKE2b-256 10c444c05d569db9fb0b33f38aeab4e2b17b510342efc15a8dd877e2b3745dbf

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e9a02c1a9c62c6fde697970339a875c0bee0fbadfecd8c7b321773e7c159191
MD5 1509fa16937e0748a98227c9b348b3b6
BLAKE2b-256 7feb71a7cc9e91df656adc40e9f059147cdda5fe948397efbd94a6781f5d60c5

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 56a69007adffe972f0e2951a8797d332f7933d4edeb7ed1443f8873be7637346
MD5 280f842a59298b672bd854b841b46236
BLAKE2b-256 cc9091b2fe729c359ca935ff85341a04125d330a694d1934caa08a3788022b22

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11cf15f04bdf4ed0c58ec944ad083a2eeaf4672b6864954f5306ae2dfd48665b
MD5 370e3556e1494212b89bfe1b02f56390
BLAKE2b-256 fcad1647915039bf798252cda43f4ef82523aa7540a63f6245ccd5a89e143599

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cfe95f5b5bce4fdb5a8fd14c76e8ae614eed6a9cf01a44d1c982cbd07723cf02
MD5 dd1b4eaf78ae7fadd4dbfe244592c909
BLAKE2b-256 b80387e3cc01c5569de203ede9015a0705a12661e82335cbf4c5aeb5ad8549dc

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73369dbba7fb3e97b87d071fdb4a6c1046f74b19e43751201e86422eb2ae053c
MD5 1f52f500b5302c3b9774b0ad436c943b
BLAKE2b-256 34d8dabd5328fb76ac3b1caf0cb813d196c4263d27fd7e26f87718d8db2fa8a5

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6e7ec14792780fff58f3636634625cd4f737b9a71bc1f969328851feaecc4283
MD5 a6159673f27a00424d95844075e1474b
BLAKE2b-256 6720a1656ee73a2145e5cf7a23e31bf195c064dc1df735ac72f6149f91140850

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c556379f43749db112bedb9f8b870bd4b328a53dcacc75d855ef1bb0435af75
MD5 27e16dd9c7064bf1b30e9c926bc7828d
BLAKE2b-256 70f05a81e759f07ceb563ad82f71e94bf1fd1e695d9f216c91f1eced36466f93

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3ab8f10be23a5f89415b814e18c1aca8edc0aa186728eeb9447b8dd9b91ac7d3
MD5 9332726121928e6a5833645f805499f6
BLAKE2b-256 ee80af5f317025cc5670708892e7d35a7e6a15631b23044405f5f44d48a4e34b

See more details on using hashes here.

File details

Details for the file spectacularAI-1.30.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.30.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.30.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae11ad1b190facd679b1c37b45c07601c61a245253258eead07140677c8cb730
MD5 bc09cd906c61e1d6e18f25712c60e856
BLAKE2b-256 0bb8b82f28edc2ff07d3b1c551ceccff71bc86b8d532f79a4312be1ac7401d4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page