Skip to main content

Spectacular AI SDK for OAK (Depth AI)

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial odometry (VIO), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (C++ version), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-1.7.0-cp310-cp310-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-1.7.0-cp39-cp39-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-1.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-1.7.0-cp38-cp38-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-1.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-1.7.0-cp37-cp37m-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-1.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-1.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d9df92a805018d74fff3817c00772d178397848a2d3c86eb182ad88502b0c631
MD5 6a167ea15cb964832ea5d11c3e87e9bd
BLAKE2b-256 761e3792675e7fc52a80d5a23c0b2dffc6d806b9c12e64221dc1d9708ffb2418

See more details on using hashes here.

File details

Details for the file spectacularAI-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22dacee85be5008c1630bf0c1d7c9d39a003df9bba10dc8a9c645a5a4e28db7f
MD5 b6490a827af741c719b89f5e0ff80830
BLAKE2b-256 ea942d0851103c8bd90d7a670223ddaf8758028cf08432f8d9330b2e9fe7f906

See more details on using hashes here.

File details

Details for the file spectacularAI-1.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f423c15e3ed098327142cbc4892bd7e606a2eacf8edc7291e762b5fc8179b8a7
MD5 76b47cabba10354c813d1ec03ed0c580
BLAKE2b-256 0ef289f1d03f21344a9d73d8e971c730e965c3ca698ebde2776f2d7e7e7b84a9

See more details on using hashes here.

File details

Details for the file spectacularAI-1.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2728052b79a3389fabaec5c1d68596d0ae06049621a719435c7fa21f6b13d172
MD5 50735f1fef3e7bfe0d13bec36729d141
BLAKE2b-256 ecedf0ef2d2764ac2109a2e73ae5852aa9bbb23ced074896ddb425745ea32a1e

See more details on using hashes here.

File details

Details for the file spectacularAI-1.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ce04023fc09e8287bd7cedf249dd4e0d34a1eb2783415b2962c55ae23ff7ad68
MD5 bb9ced88dd56f742fbe375ea1e4d3f4d
BLAKE2b-256 27fe62c0f29f32a74a376f8798be6b6b5b97fa2ea0878bb574ebb599745bee29

See more details on using hashes here.

File details

Details for the file spectacularAI-1.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20022e838f55e05137085329175d9cb0327b7d6df9a18048fcec5643022a4ebf
MD5 24daacd4ca01506443ecb1b8e143aadc
BLAKE2b-256 c1ec7be5f86510169d41cb6ab92a15dc9751bfd35af809c7f1f5661f8339b97c

See more details on using hashes here.

File details

Details for the file spectacularAI-1.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 92ac546d36b171265ec8b85d9c8a4a641541d22816829afe528d2e904ea51287
MD5 ea6c242c52de0df687781da2de35999f
BLAKE2b-256 043f68011e6db057f0ed45244093add13ea9586173b9f6cb7be305e6f684cc37

See more details on using hashes here.

File details

Details for the file spectacularAI-1.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.4

File hashes

Hashes for spectacularAI-1.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc137cb8222319f7f96f1e561c4f267d12b538b5c67dc4a4e96944626e585fd4
MD5 77a06bcde5c0fa0fed69fe5c5ff132b3
BLAKE2b-256 407f3a1c9fb0e4d422072df2580f2465322f279996dc840fa16437a2c67729a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page