Skip to main content

Spectra Extraction based on PyTorch

Project description

spectra_torch

Considering the pytorch-kalda is presented, so it is more practical to use it. Also, SpeechBrain, A PyTorch-based Speech Toolkit, is coming. I am looking forward to a nice step on speech. To conclude, this package is used to learn spectra of a signal, so it is valuable at all.

This library provides common spectra features from an audio signal including MFCCs and filter bank energies. This library mimics the library python_speech_features but PyTorch-style.

This library provides voice activity detection (VAD) based on energy. This library mimics the library VAD-python but PyTorch-style.

Use: Rui Wang. (2020, March 14). mechanicalsea/spectra: release v0.4.0 (Version 0.4.0).

Installation

This library is avaliable on pypi.org

To install from Pypi:

pip install --upgrade spectra-torch

Require:

  • python: 3.7.3
  • torch: 1.4.0
  • torchaudio: 0.4.0

Usage

Supported features:

  • Mel Frequency Cepstral Coefficients (MFCC)
  • Filterbank Energies
  • Log Filterbank Energies
  • Voice Activity Detection (VAD)

Here are examples.

Easy demo:

# Ensure cuda is available.
import spectra_torch.base as mm
import torchaudio as ta

sig, sr = ta.load_wav('piece_20_32k.wav')
sig = sig[0].cuda()
mfcc = mm.mfcc(sig, sr) # MFCC
starts, detection = mm.is_speech(sig, sr, speechlen=0.5) # VAD

Tutorial

Tutorials of MFCC and VAD is provided at notebooks.

Step-by-step description is presented. Welcome to enjoy it.

Performance

The difference between spectra_torch and python_speech_features:

  • Precision bais: 1e-4
  • Speed up: 0.1s/mfcc

MFCC

def mfcc(signal, samplerate=16000, winlen=0.025, hoplen=0.01, 
         numcep=13, nfilt=26, nfft=None, lowfreq=0, highfreq=None, 
         preemph=0.97, ceplifter=22, plusEnergy=True)

Filterbank

def fbank(signal, samplerate=16000, winlen=0.025, hoplen=0.01, 
          nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97)

VAD

def is_speech(signal, samplerate=16000, winlen=0.02, hoplen=0.01, 
              thresEnergy=0.6, speechlen=0.5, lowfreq=300, highfreq=3000, 
              preemph=0.97)

Reference

Thanks for you attention.

Free for question to my email (rwang@tongji.edu.cn).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spectra-torch-0.4.0.tar.gz (5.8 kB view hashes)

Uploaded source

Built Distribution

spectra_torch-0.4.0-py2.py3-none-any.whl (6.2 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page