Skip to main content

No project description provided

Project description

spectral-recovery

:artificial_satellite::evergreen_tree::chart_with_upwards_trend: supporting ecosystem restoration through spectral recovery analysis :chart_with_upwards_trend::evergreen_tree::artificial_satellite:

tests PyPI version Binder Code style: black


Github: https://github.com/PEOPLE-ER/spectral-recovery/

Documentation: https://people-er.github.io/spectral-recovery/

PyPi: https://pypi.org/project/spectral-recovery/

Overview

spectral-recovery is an open-source project and Python package that provides simple, centralized, and reproducible methods for performing spectral recovery analysis to support Ecosystem Restoration (ER) efforts in forested ecosystems.

The package provides straight-forward interfaces and supplementary documentation to encourage the use of well-founded remote sensing techniques in ER research and projects. To get started, users provide restoration site locations, the years of disturbance and restoration, and annual composites of spectral data. spectral-recovery handles the rest!

See Quick Start or our interactive notebooks to dive right in, (in-progress) tutorials for detailed instructions, or the theoretical basis for in-depth information.

Installation

pip install spectral-recovery

Quick Start

import spectral_recovery as sr
from spectral_recovery import data

# Read in timeseries data
spectral_ts = sr.read_timeseries(
    path_to_tifs=data.bc06_wildfire_landsat_bap_timeseries(),
    band_names={1: "blue", 2: "green", 3: "red", 4: "nir", 5: "swir16", 6: "swir22"},
)
# Compute indices
index_ts = sr.compute_indices(
    timeseries_data=spectral_ts,
    indices=["NBR", "NDVI"],
)
# Read in restoration site(s)
rest_site = sr.read_restoration_sites(
    path=data.bc06_wildfire_restoration_site(),
    dist_rest_years={0: [2005, 2006]},
)
# Compute recovery target for restoration site
median_hist = sr.recovery_targets.historic.median(
    timeseries_data=index_ts,
    restoration_sites=rest_site,
    reference_start=2003,
    reference_end=2005,
    scale="pixel",
)
# Compute recovery metrics for restoration site!
metrics = sr.compute_metrics(
    metrics=["Y2R", "R80P", "YrYr", "deltaIR", "RRI"],
    timeseries_data=index_ts,
    restoration_sites=rest_site,
    recovery_targets=median_hist,
)
# Inspect recovery metrics for the restoration site (site 0)
# e.g what is the site's mean R80P (porportion of 80% of the recovery target)?:
metrics[0].sel(metric="R80P").mean().compute()
# Or, write results out to a TIF:
metrics[0].sel(metric="Y2R").rio.to_raster("site0_y2r.tif")

Documentation

  • View background information, static tutorials, and API references in our project documentation.
  • Try out an interactive notebook: Binder

Contributing

  • Report bugs, suggest features, and see what others are saying on our GitHub Issues page.
  • Start discussions about the tool on our discussion page.
  • Want to contribute code? See our CONTRIBUTING document for more information.

How to Cite

Publication in progress. For now, when using this tool in your work we ask that you acknowledge as follows:

"spectral-recovery method developed in the PEOPLE-ER Project, managed by Hatfield Consultants, and financed by the European Space Agency."

License

Copyright 2023 Hatfield Consultants LLP

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spectral_recovery-1.0.1.tar.gz (820.5 kB view details)

Uploaded Source

Built Distribution

spectral_recovery-1.0.1-py3-none-any.whl (819.8 kB view details)

Uploaded Python 3

File details

Details for the file spectral_recovery-1.0.1.tar.gz.

File metadata

  • Download URL: spectral_recovery-1.0.1.tar.gz
  • Upload date:
  • Size: 820.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for spectral_recovery-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e4cc6ddd4810e5fcd2251e61c1c8c4aca8f52666d562934bb10727fb31238f05
MD5 59f024f01881feed821ff09249d38252
BLAKE2b-256 dda62c19a61401a02f83e7f66df111b3c021d4064eaaa7c47494b42aaec02ac1

See more details on using hashes here.

File details

Details for the file spectral_recovery-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for spectral_recovery-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fa66f4935390f47538382d2f306aa3f149ee19e5cb714ea1840b77ba6f01859c
MD5 42e31c23eb0242196dcd8dab092825ba
BLAKE2b-256 f900f62937507b09b13697cdc231249b7d390de467f5fea9e2cb30e2adedbee4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page