Skip to main content

PyTorch NN based trainable spectral linear layers

Project description

SpectralLayersPyTorch

Trainable linear spectral layers for PyTorch

Implements trainable spectral layers for PyTorch that can be initialized as 1-D & 2-D DCT and DFT transformations as shown in paper.

Install

The package can be installed as follows:

pip install spectral

or

pip install git+https://github.com/NarayanSchuetz/SpectralLayersPyTorch.git

Attribution

@misc{alberti2019trainable,
      title={Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks}, 
      author={Michele Alberti and Angela Botros and Narayan Schuez and Rolf Ingold and Marcus Liwicki and Mathias Seuret},
      year={2019},
      eprint={1911.05045},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
   }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spectralLayersPyTorch-0.989.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

spectralLayersPyTorch-0.989-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file spectralLayersPyTorch-0.989.tar.gz.

File metadata

  • Download URL: spectralLayersPyTorch-0.989.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.3

File hashes

Hashes for spectralLayersPyTorch-0.989.tar.gz
Algorithm Hash digest
SHA256 68ba544e89711e888f526074dc313444deb6e361de9d8f75e835a20398370828
MD5 daf81bbf39c84016809b04ace347efb9
BLAKE2b-256 db897cf8e1efeb8f6f7a9cc4b0fad0e3f09701ad0e46b8898c7d7ebcae263781

See more details on using hashes here.

File details

Details for the file spectralLayersPyTorch-0.989-py3-none-any.whl.

File metadata

  • Download URL: spectralLayersPyTorch-0.989-py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.3

File hashes

Hashes for spectralLayersPyTorch-0.989-py3-none-any.whl
Algorithm Hash digest
SHA256 454a610e0d4528cba6a3f7b871b624782f15968624cb669cc60449f011132188
MD5 70963f51ce3fcd708d65bd95dec4c5bd
BLAKE2b-256 6913f978d422e82a3694785ba619c0ea2192a21823806a5ddcdf095f23eeb227

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page