Skip to main content

Speechly Public Protobuf Stubs

Project description

Python Speechly API

See the generic Speechly gRPC stubs documentation for more information about using the API.

A complete example on how to stream audio from a file to the Speechly API can be found in speechly_grpc_example.py.

Install

Install the latest package using pip:

pip install speechly-api

Note that the minimum python version supported is 3.6.

Using Python Stubs

The stubs are generated for the default grpcio python package, and the examples are using asyncio.

Creating a Channel

In python, the default authority of the channel needs to be overridden, as it defaults to a string containing the port number. This will not work with the API, so we set the DNS name manually:

channel = grpc.aio.secure_channel(
    target='api.speechly.com:443',
    credentials=grpc.ssl_channel_credentials(),
    options=[('grpc.default_authority', 'api.speechly.com')]
)

IdentityAPI

Login with speechly.identity.v2.IdentityAPI using an app_id:

async def login(channel, device_id, app_id=None, project_id=None):
    assert device_id, 'UUID device_is required'
    assert (app_id or project_id), 'app_id or project_id is required'
    identity_api = IdentityAPIStub(channel)
    req = LoginRequest(device_id=device_id)
    if app_id:
        # if a token with a single app_id is required:
        req.application.app_id = app_id
    else:
        # get a token that is usable for all apps in project:
        req.project.project_id = project_id
    response = await identity_api.Login(req)
    token = response.token
    expires = datetime.fromisoformat(response.expires_at)
    return token, expires

SLU

Open a bidirectional stream to speechly.slu.v1.SLU/Stream and send audio from a source generator to the API. The following example assumes that the audio_stream is an iterator that yields audio with 1 channel and sample rate 16KHz, in bytes chunks:

async def stream_speech(channel, token, audio_stream, app_id=None):
    auth = ('authorization', f'Bearer {token}')

    async def read_responses(stream):
        transcript = []
        intent = ''
        entities = []
        resp = await stream.read()
        while resp != grpc.aio.EOF:
            if resp.HasField('started'):
                print(f'audioContext {resp.audio_context} started')
            elif resp.HasField('transcript'):
                transcript.append(resp.transcript.word)
            elif resp.HasField('entity'):
                entities.append(resp.entity.entity)
            elif resp.HasField('intent'):
                intent = resp.intent.intent
            elif resp.HasField('finished'):
                print(f'audioContext {resp.audio_context} finished')
            resp = await stream.read()
        return intent, entities, transcript

    async def send_audio(stream, source):
        await stream.write(SLURequest(event=SLUEvent(event='START', app_id=app_id)))
        for chunk in source:
            await stream.write(SLURequest(audio=chunk))
        await stream.write(SLURequest(event=SLUEvent(event='STOP')))
        await stream.done_writing()

    async with channel:
        slu = SLUStub(channel)
        try:
            stream = slu.Stream(metadata=[auth])
            config = SLUConfig(channels=1, sample_rate_hertz=16000)
            await stream.write(SLURequest(config=config))
            recv = read_responses(stream)
            send = send_audio(stream, audio_stream)
            r = await asyncio.gather(recv, send)
            intent, entities, transcript = r[0]
            print('Intent:', intent)
            print('Entities:', ', '.join(entities))
            print('Transcript:', ' '.join(transcript))
        except grpc.aio.AioRpcError as e:
            print('Error in SLU', str(e.code()), e.details())

Using the HTTP REST API

The gRPC API is available also as JSON-based HTTP version. The following is an example of calling the BatchAPI with python requests library:

import requests
import uuid
import base64
import time

# read an audio file in memory (note that the it should be PCM 16Khz 1 channels to get good results)
with open('test1_en.wav', 'rb') as f:
    audio_data = f.read()

# create a device ID (uuid)
deviceId = uuid.uuid4()

# get a Speechly access token to use the correct Speechly app
r = requests.post(
    'https://api.speechly.com/speechly.identity.v2.IdentityAPI/Login',
    json={'deviceId': str(deviceId), 'application': {'appId': 'YOUR_APP_ID'}}
)
token = r.json()['token']

# send the file to the BatchAPI to create a batch transcribe operation
batch_req = [{
    'config': {
        'encoding': 1,
        'channels': 1,
        'sampleRateHertz': 16000
    },
    'audio': base64.b64encode(audio_data).decode('ascii')
}]
r = requests.post(
    'https://api.speechly.com/speechly.slu.v1.BatchAPI/ProcessAudio',
    headers={'authorization':f'Bearer {token}'},
    json=batch_req
)
op = r.json()['operation']

# poll the BatchAPI, waiting for the batch operation to be done
while op['status'] != 'STATUS_DONE':
    time.sleep(1)
    r = requests.post(
        'https://api.speechly.com/speechly.slu.v1.BatchAPI/QueryStatus',
        headers={'authorization':f'Bearer {token}'},
        json={'id': op['id']}
    )
    op = r.json()['operation']
    if op['error'] != '':
        raise Exception('error in transcribe: ' + op['error'])

# collect the words from the transcripts
transcript = [w['word'] for w in op['transcripts']]
print(' '.join(transcript))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

speechly_api-0.8.13.tar.gz (38.0 kB view details)

Uploaded Source

Built Distribution

speechly_api-0.8.13-py3-none-any.whl (52.5 kB view details)

Uploaded Python 3

File details

Details for the file speechly_api-0.8.13.tar.gz.

File metadata

  • Download URL: speechly_api-0.8.13.tar.gz
  • Upload date:
  • Size: 38.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.6

File hashes

Hashes for speechly_api-0.8.13.tar.gz
Algorithm Hash digest
SHA256 51efe439f316150d5d4ac7447a288235b6165164e15eadac5a9876bb24f59129
MD5 a836489570b5118b783c3f1b029d9ae2
BLAKE2b-256 7a1383d1bcc7e76386672aa160d72647ba80405dca1a75ccf0b078722eee2d05

See more details on using hashes here.

File details

Details for the file speechly_api-0.8.13-py3-none-any.whl.

File metadata

File hashes

Hashes for speechly_api-0.8.13-py3-none-any.whl
Algorithm Hash digest
SHA256 19714e6caa3b4619756ca5f533f270e041ca58f4bab78a629c0b81b5a11bf024
MD5 63722ed5826f84e5accefb104265eb61
BLAKE2b-256 a360c71d4864080aed6db794402d123b23ee68d556322ee5b7f8996e8be5cde2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page