Skip to main content

Kernel density estimation on a sphere

Project description

Build Status codecov PyPI version Documentation Status DOI

Spherical Kernel Density Estimation

These packages allow you to do rudimentary kernel density estimation on a sphere. Suggestions for improvements/extensions welcome.

The fundamental principle is to replace the traditional Gaussian function used in kernel density estimation with the Von Mises-Fisher distribution.

Bandwidth estimation is still rough-and-ready.

image1

Example Usage

import numpy
from spherical_kde import SphericalKDE
import matplotlib.pyplot as plt
import cartopy.crs
from matplotlib.gridspec import GridSpec, GridSpecFromSubplotSpec

# Choose a seed for deterministic plot
numpy.random.seed(seed=0)

# Set up a grid of figures
fig = plt.figure(figsize=(10, 10))
gs_vert = GridSpec(3, 1)
gs_lower = GridSpecFromSubplotSpec(1, 2, subplot_spec=gs_vert[1])

fig.add_subplot(gs_vert[0], projection=cartopy.crs.Mollweide())
fig.add_subplot(gs_lower[0], projection=cartopy.crs.Orthographic())
fig.add_subplot(gs_lower[1], projection=cartopy.crs.Orthographic(-10, 45))
fig.add_subplot(gs_vert[2], projection=cartopy.crs.PlateCarree())

# Choose parameters for samples
nsamples = 100
pi = numpy.pi

# Generate some samples centered on (1,1) +/- 0.3 radians
theta_samples = numpy.random.normal(loc=1, scale=0.3, size=nsamples)
phi_samples = numpy.random.normal(loc=1, scale=0.3, size=nsamples)
phi_samples = numpy.mod(phi_samples, pi*2)
kde_green = SphericalKDE(phi_samples, theta_samples)

# Generate some samples centered on (-1,1) +/- 0.4 radians
theta_samples = numpy.random.normal(loc=1, scale=0.4, size=nsamples)
phi_samples = numpy.random.normal(loc=-1, scale=0.4, size=nsamples)
phi_samples = numpy.mod(phi_samples, pi*2)
kde_red = SphericalKDE(phi_samples, theta_samples)

# Generate a spread of samples along latitude 2, height 0.1
theta_samples = numpy.random.normal(loc=2, scale=0.1, size=nsamples)
phi_samples = numpy.random.uniform(low=-pi/2, high=pi/2, size=nsamples)
phi_samples = numpy.mod(phi_samples, pi*2)
kde_blue = SphericalKDE(phi_samples, theta_samples, bandwidth=0.1)

for ax in fig.axes:
    ax.set_global()
    ax.gridlines()
    ax.coastlines(linewidth=0.1)
    kde_green.plot(ax, 'g')
    kde_green.plot_samples(ax)
    kde_red.plot(ax, 'r')
    kde_blue.plot(ax, 'b')

# Save to plot
fig.tight_layout()
fig.savefig('plot.png')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spherical_kde-0.1.2.tar.gz (8.1 kB view details)

Uploaded Source

File details

Details for the file spherical_kde-0.1.2.tar.gz.

File metadata

  • Download URL: spherical_kde-0.1.2.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.8

File hashes

Hashes for spherical_kde-0.1.2.tar.gz
Algorithm Hash digest
SHA256 3d87d7d7ca8a55ff61b01459aefbc76c26d0bb4e9d846cda1d243c61d72bb621
MD5 22407321c7d5bb1caff2d559e704428f
BLAKE2b-256 dcbceac61d967e359fcb61c4b16db023a7b78239e6ddf677d809a54102f1910d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page