Skip to main content

A Python library for building AI-powered applications.

Project description

Spice

Spice is a light wrapper for AI SDKs like OpenAI's and Anthropic's. Spice simplifies LLM creations, embeddings, and transcriptions without obscuring any underlying parameters or processes. Spice also makes it ridiculously easy to switch between different providers, such as OpenAI and Anthropic, without having to modify your code.

Spice also collects useful information such as tokens used, time spent, and cost for each call, making it easily available no matter which LLM provider is being used.

Install

Spice is listed under spiceai on PyPi. To install, simply pip install spiceai.

API Keys

Spice will automatically load .env files in your current directory. To add an API key, either use a .env file or set the environment variables manually. These are the current environment variables that Spice will use:

OPENAI_API_KEY=<api_key> # Required for OpenAI calls
OPENAI_API_BASE=<base_url> # If set, will set the base url for OpenAI calls.

AZURE_OPENAI_KEY=<api_key> # Required for Azure OpenAI calls
AZURE_OPENAI_ENDPOINT=<endpoint_url> # Required for Azure OpenAI calls.

ANTHROPIC_API_KEY=<api_key> # Required for Anthropic calls

Usage Examples

All examples can be found in scripts/run.py

from spice import Spice

client = Spice()

messages: List[SpiceMessage] = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "list 5 random words"},
]
response = await client.get_response(messages=messages, model="gpt-4-0125-preview")

print(response.text)

Streaming

# You can set a default model for the client instead of passing it with each call
client = Spice(default_text_model="claude-3-opus-20240229")

# You can easily load prompts from files, directories, or even urls.
client.load_prompt("prompt.txt", name="my prompt")

# Spice can also automatically render Jinja templates.
messages: List[SpiceMessage] = [
    {"role": "system", "content": client.get_rendered_prompt("my prompt", assistant_name="Ryan Reynolds")},
    {"role": "user", "content": "list 5 random words"},
]
stream = await client.stream_response(messages=messages)

async for text in stream:
    print(text, end="", flush=True)
# Retrieve the complete response from the stream
response = await stream.complete_response()

# Response always includes the final text, no need build it from the stream yourself
print(response.text)

# Response also includes helpful stats
print(f"Took {response.total_time:.2f}s")
print(f"Input/Output tokens: {response.input_tokens}/{response.output_tokens}")

Mixing Providers

# Commonly used models and providers have premade constants
from spice.models import GPT_4_0125_PREVIEW

# Alias models for easy configuration, even mixing providers
model_aliases = {
    "task1_model": GPT_4_0125_PREVIEW,
    "task2_model": "claude-3-opus-20240229",
    "task3_model": "claude-3-haiku-20240307",
}

client = Spice(model_aliases=model_aliases)

messages: List[SpiceMessage] = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "list 5 random words"},
]
responses = await asyncio.gather(
    client.get_response(messages=messages, model="task1_model"),
    client.get_response(messages=messages, model="task2_model"),
    client.get_response(messages=messages, model="task3_model"),
)

for i, response in enumerate(responses, 1):
    print(f"\nModel {i} response:")
    print(response.text)
    print(f"Characters per second: {response.characters_per_second:.2f}")
    if response.cost is not None:
        print(f"Cost: ${response.cost / 100:.4f}")

# Spice also tracks the total cost over multiple models and providers
print(f"Total Cost: ${client.total_cost / 100:.4f}")

Using unknown models

client = Spice()

messages: List[SpiceMessage] = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "list 5 random words"},
]

# To use Azure, specify the provider and the deployment model name
response = await client.get_response(messages=messages, model="first-gpt35", provider="azure")
print(response.text)

# Alternatively, to make a model and it's provider known to Spice, create a custom Model object
from spice.models import TextModel
from spice.providers import AZURE

AZURE_GPT = TextModel("first-gpt35", AZURE, context_length=16385)
response = await client.get_response(messages=messages, model=AZURE_GPT)
print(response.text)

# Creating the model automatically registers it in Spice's model list, so listing the provider is no longer needed
response = await client.get_response(messages=messages, model="first-gpt35")
print(response.text)

Vision models

client = Spice()

# Spice makes it easy to add images from files or the internet
from spice.spice_message import file_image_message, user_message

messages: List[SpiceMessage] = [user_message("What do you see?"), file_image_message("/path/to/image.png")]
response = await client.get_response(messages, GPT_4_1106_VISION_PREVIEW)
print(response.text)

# Alternatively, you can use the SpiceMessages wrapper to easily create your prompts
spice_messages: SpiceMessages = SpiceMessages(client)
spice_messages.add_user_message("What do you see?")
spice_messages.add_file_image_message("https://example.com/image.png")
response = await client.get_response(spice_messages, CLAUDE_3_OPUS_20240229)
print(response.text)

Embeddings and Transcriptions

client = Spice()
input_texts = ["Once upon a time...", "Cinderella"]

# Spice can easily fetch embeddings and audio transcriptions
from spice.models import TEXT_EMBEDDING_ADA_002, WHISPER_1

embeddings = await client.get_embeddings(input_texts, TEXT_EMBEDDING_ADA_002)
transcription = await client.get_transcription("/path/to/audio/file", WHISPER_1)
print(transcription.text)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spiceai-0.4.3.tar.gz (40.8 kB view details)

Uploaded Source

Built Distribution

spiceai-0.4.3-py2.py3-none-any.whl (28.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file spiceai-0.4.3.tar.gz.

File metadata

  • Download URL: spiceai-0.4.3.tar.gz
  • Upload date:
  • Size: 40.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.2

File hashes

Hashes for spiceai-0.4.3.tar.gz
Algorithm Hash digest
SHA256 4f7d22d5449de7181a5008aa6fa25c5ee286f34a3e87bc0dff4a6afc6ec3b1fb
MD5 20545e4cd26e8fc02b448bce0c180313
BLAKE2b-256 0a7d5a97cd2b49c178475d158ee880867c3be74b77b1a1d5ed2ff0b6eb5d7b8f

See more details on using hashes here.

File details

Details for the file spiceai-0.4.3-py2.py3-none-any.whl.

File metadata

  • Download URL: spiceai-0.4.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 28.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.2

File hashes

Hashes for spiceai-0.4.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 885503985dd1e0b84ae82de412a061b209cde8229d6bcb5668758dceecce605e
MD5 0e850c24271f64a288a5327ed479f7f4
BLAKE2b-256 604aa88350cd4d06119a52e532b0a6b5a07faab532347f512d6578da3c7020b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page