Skip to main content

Snow Depth Retrievals from Sentinel-1 Backscatter.

Project description

MIT License PIP COVERAGE DOI

spicy-snow

Python module to use volumetric scattering at C-band to calculate snow depths from Sentinel-1 imagery using Lieven et al.'s 2021 technique.

The relevant papers for this repository technique are:

Lievens et al 2019 - https://www.nature.com/articles/s41467-019-12566-y

Lievens et al 2021 - https://tc.copernicus.org/articles/16/159/2022/

Example Installation

pip install spicy-snow

Example usage:

from pathlib import Path

# Add main repo to path if you haven't added with conda-develop
# import sys
# sys.path.append('path/to/the/spicy-snow/')

from spicy_snow.retrieval import retrieve_snow_depth
from spicy_snow.IO.user_dates import get_input_dates

# change to your minimum longitude, min lat, max long, max lat
area = shapely.geometry.box(-113.2, 43, -113, 43.4)

# this will be where your results are saved
out_nc = Path('~/Desktop/spicy-test/test.nc').expanduser()

# this will generate a tuple of dates from the previous August 1st to this date
dates = get_input_dates('2021-04-01') # run on all s1 images from (2020-08-01, 2021-04-01) in this example

spicy_ds = retrieve_snow_depth(area = area, dates = dates, 
                               work_dir = Path('~/Desktop/spicy-test/').expanduser(), 
                               job_name = f'testing_spicy',
                               existing_job_name = 'testing_spicy',
                               debug=False,
                               outfp=out_nc)

Running over large areas/memory issues

If you are running out of memory or running over multiple degrees of latitude this code snippet should get you started on batch processing swathes.

from shapely import geometry
from itertools import product
for lon_min, lat_min in product(range(-117, -113), range(43, 46)):
    area = shapely.geometry.box(lon_min, lat_min, lon_min + 1, lat_min + 1)
    out_nc = Path(f'~/Desktop/spicy-test/swath_{lon_min}-{lon_min + 1}_{lat_min}-{lat_min + 1}.nc').expanduser()
    if out_nc.exists():
        continue

    spicy_ds = retrieve_snow_depth(area = area, dates = dates, 
                                work_dir = Path('~/scratch/spicy-lowman-quadrant/data/').expanduser(), 
                                job_name = f'spicy-lowman-{lon_min}-{lon_min + 1}_{lat_min}-{lat_min + 1}', # v1
                                existing_job_name = f'spicy-lowman-{lon_min}-{lon_min + 1}_{lat_min}-{lat_min + 1}', # v1
                                debug=False,
                                outfp=out_nc)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

Coverage instructions

Run the following from the root directory of this project to get a coverage report.

You will need to have the dependencies and coverage packages available.

python -m coverage run -m unittest discover -s ./tests
python -m coverage report

License

Distributed under the MIT License. See LICENSE for more information.

Acknowledgments

Readme template: https://github.com/othneildrew/Best-README-Template

Title image: https://openai.com/dall-e-2/

Contact

Zach Hoppinen: zacharyhoppinen@u.boisestate.edu

Project Link: https://github.com/SnowEx/spicy-snow

Links to relevant repos/sites

Sentinel 1 Download: https://github.com/ASFHyP3/hyp3-sdk https://github.com/asfadmin/Discovery-asf_search

IMS Download: https://github.com/tylertucker202/tibet_snow_man/blob/master/tutorial/Tibet_snow_man_blog_entry.ipynb https://github.com/guidocioni/snow_ims

PROBA-V FCF Download: https://zenodo.org/record/3939050/files/PROBAV_LC100_global_v3.0.1_2019-nrt_Tree-CoverFraction-layer_EPSG-4326.tif

Xarray: https://github.com/pydata/xarray

Rioxarray: https://github.com/corteva/rioxarray

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spicy-snow-0.2.1.tar.gz (39.6 kB view details)

Uploaded Source

Built Distribution

spicy_snow-0.2.1-py3-none-any.whl (33.4 kB view details)

Uploaded Python 3

File details

Details for the file spicy-snow-0.2.1.tar.gz.

File metadata

  • Download URL: spicy-snow-0.2.1.tar.gz
  • Upload date:
  • Size: 39.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for spicy-snow-0.2.1.tar.gz
Algorithm Hash digest
SHA256 fe4291dc7e0b1e7222fe8b68f3261656f3116a68fdc5457deabace8452c9f718
MD5 c663424a36174645b40e3e75c3cb8e8c
BLAKE2b-256 9492ab146526f52af885ab0affa347ee576e00aef3c2d0f21fcb424055e98788

See more details on using hashes here.

File details

Details for the file spicy_snow-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: spicy_snow-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 33.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for spicy_snow-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 04e8d48252a1d5765a078b8cf11dc6c970cae5b517913db9b97c9ab5355a1c97
MD5 6cf5a81b5cf3d33ff89ee378ec25990e
BLAKE2b-256 f152223e49c3bef8f3fb37839c6772cf0b9efaaf30adbfc81a8b68b4b937b008

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page