Snow Depth Retrievals from Sentinel-1 Backscatter.
Project description
spicy-snow
Python module to use volumetric scattering at C-band to calculate snow depths from Sentinel-1 imagery using Lieven et al.'s 2021 technique.
The relevant papers for this repository technique are:
Lievens et al 2019 - https://www.nature.com/articles/s41467-019-12566-y
Lievens et al 2021 - https://tc.copernicus.org/articles/16/159/2022/
Example Installation
pip install spicy-snow
Example usage:
from pathlib import Path
# Add main repo to path if you haven't added with conda-develop
# import sys
# sys.path.append('path/to/the/spicy-snow/')
from spicy_snow.retrieval import retrieve_snow_depth
from spicy_snow.IO.user_dates import get_input_dates
# change to your minimum longitude, min lat, max long, max lat
area = shapely.geometry.box(-113.2, 43, -113, 43.4)
# this will be where your results are saved
out_nc = Path('~/Desktop/spicy-test/test.nc').expanduser()
# this will generate a tuple of dates from the previous August 1st to this date
dates = get_input_dates('2021-04-01') # run on all s1 images from (2020-08-01, 2021-04-01) in this example
spicy_ds = retrieve_snow_depth(area = area, dates = dates,
work_dir = Path('~/Desktop/spicy-test/').expanduser(),
job_name = f'testing_spicy',
existing_job_name = 'testing_spicy',
debug=False,
outfp=out_nc)
Running over large areas/memory issues
If you are running out of memory or running over multiple degrees of latitude this code snippet should get you started on batch processing swathes.
from shapely import geometry
from itertools import product
for lon_min, lat_min in product(range(-117, -113), range(43, 46)):
area = shapely.geometry.box(lon_min, lat_min, lon_min + 1, lat_min + 1)
out_nc = Path(f'~/Desktop/spicy-test/swath_{lon_min}-{lon_min + 1}_{lat_min}-{lat_min + 1}.nc').expanduser()
if out_nc.exists():
continue
spicy_ds = retrieve_snow_depth(area = area, dates = dates,
work_dir = Path('~/scratch/spicy-lowman-quadrant/data/').expanduser(),
job_name = f'spicy-lowman-{lon_min}-{lon_min + 1}_{lat_min}-{lat_min + 1}', # v1
existing_job_name = f'spicy-lowman-{lon_min}-{lon_min + 1}_{lat_min}-{lat_min + 1}', # v1
debug=False,
outfp=out_nc)
Contributing
Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.
If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!
- Fork the Project
- Create your Feature Branch (
git checkout -b feature/AmazingFeature
) - Commit your Changes (
git commit -m 'Add some AmazingFeature'
) - Push to the Branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
Coverage instructions
Run the following from the root directory of this project to get a coverage report.
You will need to have the dependencies and coverage
packages available.
python -m coverage run -m unittest discover -s ./tests
python -m coverage report
License
Distributed under the MIT License. See LICENSE
for more information.
Acknowledgments
Readme template: https://github.com/othneildrew/Best-README-Template
Title image: https://openai.com/dall-e-2/
Contact
Zach Hoppinen: zacharykeskinen@boisestate.edu
Project Link: https://github.com/SnowEx/spicy-snow
Links to relevant repos/sites
Sentinel 1 Download: https://github.com/ASFHyP3/hyp3-sdk https://github.com/asfadmin/Discovery-asf_search
IMS Download: https://github.com/tylertucker202/tibet_snow_man/blob/master/tutorial/Tibet_snow_man_blog_entry.ipynb https://github.com/guidocioni/snow_ims
PROBA-V FCF Download: https://zenodo.org/record/3939050/files/PROBAV_LC100_global_v3.0.1_2019-nrt_Tree-CoverFraction-layer_EPSG-4326.tif
Xarray: https://github.com/pydata/xarray
Rioxarray: https://github.com/corteva/rioxarray
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file spicy-snow-0.1.4.tar.gz
.
File metadata
- Download URL: spicy-snow-0.1.4.tar.gz
- Upload date:
- Size: 38.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7ead678e995a2224959bafe811756add838e48af171150997251b75cf079530 |
|
MD5 | a6b7a5837b6769807866c3708a4f6584 |
|
BLAKE2b-256 | 5eb757115c792dbcd992bcb73410be9fa2e88e0726352e996ca5f721e48781e8 |
File details
Details for the file spicy_snow-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: spicy_snow-0.1.4-py3-none-any.whl
- Upload date:
- Size: 32.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68aadb9abf9e7ccd98d6db3571da55cf71dae8f9b4ef9d6b365c202e72f4a655 |
|
MD5 | f2fffcd4df54ce3c531f565ea8a84cbf |
|
BLAKE2b-256 | 1a5104a1532a3333ce5760bb2b5f947201c791bb39229bf3a4a45c4d9a05d21f |