Skip to main content

spinesTS, a powerful timeseries toolsets.

Project description

spinesTS

Time Series forecasting toolsets

Install

pip install spinesTS

spinesTS Modules

  • base: Model base class
  • data: Built-in datasets and data wrapper classes
  • feature_generator: Feature generation functions
  • metrics: Model performance measurement function
  • ml_model: Machine learning models
  • nn: neural network models
  • pipeline: Model fitting and prediction pipeline
  • plotting: Visualization of model prediction results
  • preprocessing: data preprocessing
  • utils: Tool functions set
  • layers: Neural network layer

Tutorials

Getting started

# simple demo to predict Electric data
from sklearn.preprocessing import StandardScaler
from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.pipeline import Pipeline
from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import MultiOutputRegressor
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],  # The sequence of parameter y_seq is cut based on parameter x_seq
    # sliding window size, every 30 before days to predict after days
    window_size=30, 
    # predict after 30 days
    pred_steps=30, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# Assemble the model using Pipeline class
model = Pipeline([
    ('sc', StandardScaler()),
    ('model', MultiOutputRegressor(LGBMRegressor(random_state=2022)))
])
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()
[output]:
x_train shape is (270, 30), x_test shape is (68, 30),y_train shape is (270, 30),y_test shape is (68, 30)
Model successfully initialization...
r2_score is 0.8186046606725977

model prediction image

Using nn module

StackingRNN

import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d
from spinesTS.nn import StackingRNN
from spinesTS.metrics import r2_score, mean_absolute_error, mean_absolute_percentage_error


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],
    # sliding window size, every 128 before days to predict after days
    window_size=128, 
    # predict after 24 days goods incoming
    pred_steps=24, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = StackingRNN(in_features=128, out_features=24, 
                    random_seed=42, loss_fn='mae', 
                    learning_rate=0.001, dropout=0.1, diff_n=1, 
                    stack_num=2, bidirectional=True, device='cpu')

model.fit(x_train, y_train, eval_set=(x_test[:-2], y_test[:-2]), batch_size=32,
             min_delta=0, patience=100, epochs=3000, verbose=False, lr_scheduler=None)
y_pred_cs = model.predict(x_test[-2:])
print(f"r2: {r2_score(y_test[-2:].T, y_pred_cs.T)}")
print(f"mae: {mean_absolute_error(y_test[-2:], y_pred_cs)}")
print(f"mape: {mean_absolute_percentage_error(y_test[-2:], y_pred_cs)}")
a = plot2d(y_test[-2:], y_pred_cs, eval_slices='[-1]', labels=['y_test', 'y_pred'], figsize=(20, 6))
plt.show()

GAUNet

import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d
from spinesTS.nn import GAUNet
from spinesTS.metrics import r2_score, mean_absolute_error, mean_absolute_percentage_error


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],
    # sliding window size, every 128 before days to predict after days
    window_size=128, 
    # predict after 24 days 
    pred_steps=24, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = GAUNet(in_features=128, out_features=24, 
               random_seed=42, flip_features=False, 
               learning_rate=0.001, level=5, device='cpu')

model.fit(x_train, y_train, eval_set=(x_test[:-2], y_test[:-2]), batch_size=32,
             min_delta=0, patience=100, epochs=3000, verbose=False, lr_scheduler='ReduceLROnPlateau')
y_pred_cs = model.predict(x_test[-2:])
print(f"r2: {r2_score(y_test[-2:].T, y_pred_cs.T)}")
print(f"mae: {mean_absolute_error(y_test[-2:], y_pred_cs)}")
print(f"mape: {mean_absolute_percentage_error(y_test[-2:], y_pred_cs)}")
a = plot2d(y_test[-2:], y_pred_cs, eval_slices='[-1]', labels=['y_test', 'y_pred'], figsize=(20, 6))
plt.show()

Time2VecNet

import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d
from spinesTS.nn import Time2VecNet
from spinesTS.metrics import r2_score, mean_absolute_error, mean_absolute_percentage_error


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],
    # sliding window size, every 128 before days to predict after days
    window_size=128, 
    # predict after 24 days 
    pred_steps=24, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = Time2VecNet(in_features=128, out_features=24, 
               random_seed=42, flip_features=False, 
               learning_rate=0.001, device='cpu')

model.fit(x_train, y_train, eval_set=(x_test[:-2], y_test[:-2]), batch_size=32,
             min_delta=0, patience=100, epochs=3000, verbose=False, lr_scheduler='CosineAnnealingLR')
y_pred_cs = model.predict(x_test[-2:])
print(f"r2: {r2_score(y_test[-2:].T, y_pred_cs.T)}")
print(f"mae: {mean_absolute_error(y_test[-2:], y_pred_cs)}")
print(f"mape: {mean_absolute_percentage_error(y_test[-2:], y_pred_cs)}")
a = plot2d(y_test[-2:], y_pred_cs, eval_slices='[-1]', labels=['y_test', 'y_pred'], figsize=(20, 6))
plt.show()

Using ml_model module

MultiStepRegressor

from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import MultiStepRegressor
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    df['value'], 
    df['value'],
    # sliding window size, every 30 before days to predict after days
    window_size=30, 
    # predict after 30 days 
    pred_steps=30, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = MultiStepRegressor(LGBMRegressor(random_state=2022))
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()

MultiOutputRegressor

from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import MultiOutputRegressor
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    df['value'], 
    df['value'],
    # sliding window size, every 30 before days to predict after days
    window_size=30, 
    # predict after 30 days 
    pred_steps=30, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = MultiOutputRegressor(LGBMRegressor(random_state=2022))
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()

WideGBRT

from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import GBRTPreprocessing, WideGBRT
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data and generate new features
gbrt_processor = GBRTPreprocessing(in_features=128, out_features=30, 
                                   target_col='value', train_size=0.8, date_col='date',
                                   differential_n=1  # The order of data differentiation.
                                   )
gbrt_processor.fit(df)

x_train, x_test, y_train, y_test = gbrt_processor.transform(df)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = WideGBRT(model=LGBMRegressor(random_state=2022))
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()

Using Data module

from spinesTS.data import *
series_data = BuiltInSeriesData(print_file_list=True)
+---+----------------------+----------------------------------------------+
|   | ds name              | columns                                      |
+---+----------------------+----------------------------------------------+
| 0 | ETTh1                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 1 | ETTh2                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 2 | ETTm1                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 3 | ETTm2                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 4 | Electric_Production  | date, value                                  |
| 5 | Messages_Sent        | date, ta, tb, tc                             |
| 6 | Messages_Sent_Hour   | date, hour, ta, tb, tc                       |
| 7 | Supermarket_Incoming | date, goods_cnt                              |
| 8 | Web_Sales            | date, type_a, type_b, sales_cnt              |
+---+----------------------+----------------------------------------------+
# select one dataset
df_a = series_data['ETTh1']  # series_data[0], it works, too
print(type(df_a))  # <class 'spinesTS.data._data_base.DataTS'>

# Because DataTS inherit from pandas DataFrame, it has all the functionality of pandas DataFrame
df_a.head() ,df_a.tail(), df_a.shape

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesTS-0.3.13.tar.gz (8.8 MB view details)

Uploaded Source

Built Distribution

spinesTS-0.3.13-py3-none-any.whl (8.9 MB view details)

Uploaded Python 3

File details

Details for the file spinesTS-0.3.13.tar.gz.

File metadata

  • Download URL: spinesTS-0.3.13.tar.gz
  • Upload date:
  • Size: 8.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesTS-0.3.13.tar.gz
Algorithm Hash digest
SHA256 6e0ad92eacfaf37034d64a80c12cb9b7f37f0a40474ba14578f146c39630074a
MD5 23b5a636d19e6dc493aff7e00cfcebab
BLAKE2b-256 f69ec7d5d2d21d729617cd16363154aed96954d7c2f9ebe1b6bc317a98bd3443

See more details on using hashes here.

File details

Details for the file spinesTS-0.3.13-py3-none-any.whl.

File metadata

  • Download URL: spinesTS-0.3.13-py3-none-any.whl
  • Upload date:
  • Size: 8.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesTS-0.3.13-py3-none-any.whl
Algorithm Hash digest
SHA256 52a31d7f477a010db9fe50126d254a6dd19a4848d80331cb913ea5b0c1dc4502
MD5 20f439e1f09091cfc1cb0063b0198ca4
BLAKE2b-256 491c9448133ef93df1d62bc623f130eae7361487ce64284be2398058c325375c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page