Skip to main content

spinesTS, a powerful timeseries toolsets.

Project description

spinesTS

Time Series forecasting toolsets

Install

pip install spinesTS

spinesTS Modules

  • base: Model base class
  • data: Built-in datasets and data wrapper classes
  • feature_generator: Feature generation functions
  • metrics: Model performance measurement function
  • ml_model: Machine learning models
  • nn: neural network models
  • pipeline: Model fitting and prediction pipeline
  • plotting: Visualization of model prediction results
  • preprocessing: data preprocessing
  • utils: Tool functions set
  • layers: Neural network layer

Tutorials

Getting started

# simple demo to predict Electric data
from sklearn.preprocessing import StandardScaler
from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.pipeline import Pipeline
from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import MultiOutputRegressor
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],  # The sequence of parameter y_seq is cut based on parameter x_seq
    # sliding window size, every 30 before days to predict after days
    window_size=30, 
    # predict after 30 days
    pred_steps=30, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# Assemble the model using Pipeline class
model = Pipeline([
    ('sc', StandardScaler()),
    ('model', MultiOutputRegressor(LGBMRegressor(random_state=2022)))
])
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()
[output]:
x_train shape is (270, 30), x_test shape is (68, 30),y_train shape is (270, 30),y_test shape is (68, 30)
Model successfully initialization...
r2_score is 0.8186046606725977

model prediction image

Using nn module

StackingRNN

import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d
from spinesTS.nn import StackingRNN
from spinesTS.metrics import r2_score, mean_absolute_error, mean_absolute_percentage_error


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],
    # sliding window size, every 128 before days to predict after days
    window_size=128, 
    # predict after 24 days goods incoming
    pred_steps=24, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = StackingRNN(in_features=128, out_features=24, 
                    random_seed=42, loss_fn='mae', 
                    learning_rate=0.001, dropout=0.1, diff_n=1, 
                    stack_num=2, bidirectional=True, device='cpu')

model.fit(x_train, y_train, eval_set=(x_test[:-2], y_test[:-2]), batch_size=32,
             min_delta=0, patience=100, epochs=3000, verbose=False, lr_scheduler=None)
y_pred_cs = model.predict(x_test[-2:])
print(f"r2: {r2_score(y_test[-2:].T, y_pred_cs.T)}")
print(f"mae: {mean_absolute_error(y_test[-2:], y_pred_cs)}")
print(f"mape: {mean_absolute_percentage_error(y_test[-2:], y_pred_cs)}")
a = plot2d(y_test[-2:], y_pred_cs, eval_slices='[-1]', labels=['y_test', 'y_pred'], figsize=(20, 6))
plt.show()

GAUNet

import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d
from spinesTS.nn import GAUNet
from spinesTS.metrics import r2_score, mean_absolute_error, mean_absolute_percentage_error


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],
    # sliding window size, every 128 before days to predict after days
    window_size=128, 
    # predict after 24 days 
    pred_steps=24, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = GAUNet(in_features=128, out_features=24, 
               random_seed=42, flip_features=False, 
               learning_rate=0.001, level=5, device='cpu')

model.fit(x_train, y_train, eval_set=(x_test[:-2], y_test[:-2]), batch_size=32,
             min_delta=0, patience=100, epochs=3000, verbose=False, lr_scheduler='ReduceLROnPlateau')
y_pred_cs = model.predict(x_test[-2:])
print(f"r2: {r2_score(y_test[-2:].T, y_pred_cs.T)}")
print(f"mae: {mean_absolute_error(y_test[-2:], y_pred_cs)}")
print(f"mape: {mean_absolute_percentage_error(y_test[-2:], y_pred_cs)}")
a = plot2d(y_test[-2:], y_pred_cs, eval_slices='[-1]', labels=['y_test', 'y_pred'], figsize=(20, 6))
plt.show()

Time2VecNet

import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d
from spinesTS.nn import Time2VecNet
from spinesTS.metrics import r2_score, mean_absolute_error, mean_absolute_percentage_error


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    x_seq=df['value'], 
    y_seq=df['value'],
    # sliding window size, every 128 before days to predict after days
    window_size=128, 
    # predict after 24 days 
    pred_steps=24, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = Time2VecNet(in_features=128, out_features=24, 
               random_seed=42, flip_features=False, 
               learning_rate=0.001, device='cpu')

model.fit(x_train, y_train, eval_set=(x_test[:-2], y_test[:-2]), batch_size=32,
             min_delta=0, patience=100, epochs=3000, verbose=False, lr_scheduler='CosineAnnealingLR')
y_pred_cs = model.predict(x_test[-2:])
print(f"r2: {r2_score(y_test[-2:].T, y_pred_cs.T)}")
print(f"mae: {mean_absolute_error(y_test[-2:], y_pred_cs)}")
print(f"mape: {mean_absolute_percentage_error(y_test[-2:], y_pred_cs)}")
a = plot2d(y_test[-2:], y_pred_cs, eval_slices='[-1]', labels=['y_test', 'y_pred'], figsize=(20, 6))
plt.show()

Using ml_model module

MultiStepRegressor

from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import MultiStepRegressor
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    df['value'], 
    df['value'],
    # sliding window size, every 30 before days to predict after days
    window_size=30, 
    # predict after 30 days 
    pred_steps=30, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = MultiStepRegressor(LGBMRegressor(random_state=2022))
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()

MultiOutputRegressor

from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import MultiOutputRegressor
from spinesTS.preprocessing import split_series
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data
x_train, x_test, y_train, y_test = split_series(
    df['value'], 
    df['value'],
    # sliding window size, every 30 before days to predict after days
    window_size=30, 
    # predict after 30 days 
    pred_steps=30, 
    train_size=0.8
)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = MultiOutputRegressor(LGBMRegressor(random_state=2022))
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()

WideGBRT

from lightgbm import LGBMRegressor
import matplotlib.pyplot as plt

from spinesTS.data import LoadElectricDataSets
from spinesTS.ml_model import GBRTPreprocessing, WideGBRT
from spinesTS.plotting import plot2d


# load data
df = LoadElectricDataSets()

# split data and generate new features
gbrt_processor = GBRTPreprocessing(in_features=128, out_features=30, 
                                   target_col='value', train_size=0.8, date_col='date',
                                   differential_n=1  # The order of data differentiation.
                                   )
gbrt_processor.fit(df)

x_train, x_test, y_train, y_test = gbrt_processor.transform(df)

print(f"x_train shape is {x_train.shape}, "
      f"x_test shape is {x_test.shape}," 
      f"y_train shape is {y_train.shape},"
      f"y_test shape is {y_test.shape}")

# model initialization
model = WideGBRT(model=LGBMRegressor(random_state=2022))
print("Model successfully initialization...")

# fitting model
model.fit(x_train, y_train, eval_set=(x_test, y_test), verbose=0)
print(f"r2_score is {model.score(x_test, y_test)}")

# plot the predicted results
fig = plot2d(y_test, model.predict(x_test), figsize=(20, 10), 
       eval_slices='[:30]', labels=['y_test', 'y_pred'])
plt.show()

Using Data module

from spinesTS.data import *
series_data = BuiltInSeriesData(print_file_list=True)
+---+----------------------+----------------------------------------------+
|   | ds name              | columns                                      |
+---+----------------------+----------------------------------------------+
| 0 | ETTh1                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 1 | ETTh2                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 2 | ETTm1                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 3 | ETTm2                | date, HUFL, HULL, MUFL, MULL, LUFL, LULL, OT |
| 4 | Electric_Production  | date, value                                  |
| 5 | Messages_Sent        | date, ta, tb, tc                             |
| 6 | Messages_Sent_Hour   | date, hour, ta, tb, tc                       |
| 7 | Supermarket_Incoming | date, goods_cnt                              |
| 8 | Web_Sales            | date, type_a, type_b, sales_cnt              |
+---+----------------------+----------------------------------------------+
# select one dataset
df_a = series_data['ETTh1']  # series_data[0], it works, too
print(type(df_a))  # <class 'spinesTS.data._data_base.DataTS'>

# Because DataTS inherit from pandas DataFrame, it has all the functionality of pandas DataFrame
df_a.head() ,df_a.tail(), df_a.shape

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesTS-0.3.21.tar.gz (8.8 MB view details)

Uploaded Source

Built Distribution

spinesTS-0.3.21-py3-none-any.whl (8.9 MB view details)

Uploaded Python 3

File details

Details for the file spinesTS-0.3.21.tar.gz.

File metadata

  • Download URL: spinesTS-0.3.21.tar.gz
  • Upload date:
  • Size: 8.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesTS-0.3.21.tar.gz
Algorithm Hash digest
SHA256 8cd8934e71377ff9f39a6772548b2e2e199da5137f1374ca6ea0438ef16800a9
MD5 7f28455da16dfbc088ea27e7fc7071d7
BLAKE2b-256 ac0e4bc08b702a94596f817c5033d6cd4ba4d0509ad20813c9dffac1196922ae

See more details on using hashes here.

File details

Details for the file spinesTS-0.3.21-py3-none-any.whl.

File metadata

  • Download URL: spinesTS-0.3.21-py3-none-any.whl
  • Upload date:
  • Size: 8.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesTS-0.3.21-py3-none-any.whl
Algorithm Hash digest
SHA256 399e86a63c81bc242238a7f27308ae8dcc1f9b34a0661762023fbad649d826b0
MD5 b5a243e5b505670ec0ee473e61255d98
BLAKE2b-256 1b1bbb10d14c778383c08601c05701942306642f49d65c748b7f6a944c7c4e98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page