Skip to main content

Machine-Learning Toolsets

Project description

spinesUtils -- A Machine-Learning Toolsets

Let you get more done in less time.


This is where all stories begin:

pip install spinesUtils

better CSV dataloader

from spinesUtils import read_csv

your_df = read_csv(
    fp='/path/to/your/file.csv',
    sep=',',  # equal to pandas read_csv.sep
    turbo_method='pyarrow',  # use turbo_method to speed up load time
    chunk_size=None,  # it can be integer if you want to use pandas backend
    save_as_pkl=False,  # if you want to save the file as pickle, it can speed up next load time
    transform2low_mem=True,  # it can compresses file to save more memory
    verbose=False
)

better pandas DataFrame insight tools

from spinesUtils import df_preview, classify_samples_dist

df_insight = df_preview(your_df)

df_target_distribution = classify_samples_dist(your_df, target_col=your_df[y_col])

print(df_insight)
print(df_target_distribution)

better dataframe compresses/uncompress tools

# single dataframe
from spinesUtils import transform_dtypes_low_mem, inverse_transform_dtypes

# compresses file to save memory
transform_dtypes_low_mem(your_df, verbose=True)

# uncompress file to python type
inverse_transform_dtypes(your_df, verbose=True, int_dtype=int, float_dtype=float)
# dataframes
import numpy as np
from spinesUtils import transform_batch_dtypes_low_mem, inverse_transform_batch_dtypes

your_dfs = [your_df1, your_df2, your_df3]  # it can be unlimited

# compresses files to save memory
transform_batch_dtypes_low_mem(your_dfs, verbose=True)

# uncompress file to numpy type
inverse_transform_batch_dtypes(your_dfs, verbose=True, int_dtype=np.int32, float_dtype=np.float32)

better train_test_split function

# return numpy.ndarray
from spinesUtils import train_test_split_bigdata

X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)
# return pandas.dataframe
from spinesUtils import train_test_split_bigdata_df

train, valid, test = train_test_split_bigdata_df(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5,
    reset_index=True
)

better imbalanced-data model

from spinesUtils import BinaryBalanceClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import f1_score, recall_score, precision_score

classifier = BinaryBalanceClassifier(meta_estimators=[LGBMClassifier(), LGBMClassifier()])

classifier.fit(your_df[x_cols], your_df[y_col], threshold_search_set=(your_df[x_cols], your_df[y_col]))

print('threshold: ', classifier.auto_threshold)

print(
    'f1:', f1_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'recall:', recall_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'precision:', precision_score(your_df[y_col], classifier.predict(your_df[x_cols]))
)

log for human

from spinesUtils import Logger

your_logger = Logger(name='your_logger',
                     fp='/path/to/your.log',  # If fp = None, the log file will not be saved
                     verbose=True,
                     truncate_file=True,
                     with_time=True)

your_logger.insert2file("test")  # only insert to log file
your_logger.print('test')  # only print to console

# Or you can do it both
your_logger.insert_and_throwout('test')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesUtils-0.3.1.tar.gz (26.8 kB view details)

Uploaded Source

Built Distribution

spinesUtils-0.3.1-py3-none-any.whl (36.4 kB view details)

Uploaded Python 3

File details

Details for the file spinesUtils-0.3.1.tar.gz.

File metadata

  • Download URL: spinesUtils-0.3.1.tar.gz
  • Upload date:
  • Size: 26.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for spinesUtils-0.3.1.tar.gz
Algorithm Hash digest
SHA256 42cc4138320d63d532c7ae79a788e2ff31fa7dc6615f458e87f1a062ca11feda
MD5 0dc2ffa41835bb7282f7a9c582ee7010
BLAKE2b-256 b06120c8c4ebbd9a3d7b5d790c82a79f8043684cfd76bed2e739c2a17f3dc024

See more details on using hashes here.

File details

Details for the file spinesUtils-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: spinesUtils-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 36.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for spinesUtils-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 273beb26ac88904918f110be367cf4743cf3ff82970bc4bebc7d39145c1defbb
MD5 b7cd4bb3393990956eb7438d676aaa4b
BLAKE2b-256 ceea9a88ffc7925ceb33a8a590b11b428f0e2b89a5b9975b8e565bbf6496d681

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page