Skip to main content

Machine-Learning Toolsets

Project description

spinesUtils -- A Machine-Learning Toolsets

Let you get more done in less time.


This is where all stories begin:

pip install spinesUtils

better CSV dataloader

from spinesUtils import read_csv

your_df = read_csv(
    fp='/path/to/your/file.csv',
    sep=',',  # equal to pandas read_csv.sep
    turbo_method='polars',  # use turbo_method to speed up load time
    chunk_size=None,  # it can be integer if you want to use pandas backend
    transform2low_mem=True,  # it can compresses file to save more memory
    verbose=False
)

better pandas DataFrame insight tools

from spinesUtils import df_preview, classify_samples_dist

df_insight = df_preview(your_df)

df_target_distribution = classify_samples_dist(your_df, target_col=your_df[y_col])

print(df_insight)
print(df_target_distribution)

better dataframe compresses/uncompress tools

# single dataframe
from spinesUtils import transform_dtypes_low_mem, inverse_transform_dtypes

# compresses file to save memory
transform_dtypes_low_mem(your_df, verbose=True)

# uncompress file to python type
inverse_transform_dtypes(your_df, verbose=True, int_dtype=int, float_dtype=float)
# dataframes
import numpy as np
from spinesUtils import transform_batch_dtypes_low_mem, inverse_transform_batch_dtypes

your_dfs = [your_df1, your_df2, your_df3]  # it can be unlimited

# compresses files to save memory
transform_batch_dtypes_low_mem(your_dfs, verbose=True)

# uncompress file to numpy type
inverse_transform_batch_dtypes(your_dfs, verbose=True, int_dtype=np.int32, float_dtype=np.float32)

better train_test_split function

# return numpy.ndarray
from spinesUtils import train_test_split_bigdata

X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)
# return pandas.dataframe
from spinesUtils import train_test_split_bigdata_df

train, valid, test = train_test_split_bigdata_df(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5,
    reset_index=True
)

better imbalanced-data model

from spinesUtils import BinaryBalanceClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import f1_score, recall_score, precision_score

classifier = BinaryBalanceClassifier(meta_estimators=[LGBMClassifier(), LGBMClassifier()])

classifier.fit(your_df[x_cols], your_df[y_col], threshold_search_set=(your_df[x_cols], your_df[y_col]))

print('threshold: ', classifier.auto_threshold)

print(
    'f1:', f1_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'recall:', recall_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'precision:', precision_score(your_df[y_col], classifier.predict(your_df[x_cols]))
)

log for human

from spinesUtils import Logger

your_logger = Logger(name='your_logger',
                     fp='/path/to/your.log',  # If fp = None, the log file will not be saved
                     verbose=True,
                     truncate_file=True,
                     with_time=True)

your_logger.insert2file("test")  # only insert to log file
your_logger.print('test')  # only print to console

# Or you can do it both
your_logger.insert_and_throwout('test')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesUtils-0.3.12.tar.gz (27.5 kB view details)

Uploaded Source

Built Distribution

spinesUtils-0.3.12-py3-none-any.whl (39.9 kB view details)

Uploaded Python 3

File details

Details for the file spinesUtils-0.3.12.tar.gz.

File metadata

  • Download URL: spinesUtils-0.3.12.tar.gz
  • Upload date:
  • Size: 27.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesUtils-0.3.12.tar.gz
Algorithm Hash digest
SHA256 f37ded3d6d398719136205753b3e068317ff6e76a92acfdae7ab323690e6beea
MD5 43c5a4ccc6c49488d2550ed162122a53
BLAKE2b-256 ca7c0db8fdb49a3fef2eb3633800dcb9206376e2c3b59fc4ec3ad769dc6eba07

See more details on using hashes here.

File details

Details for the file spinesUtils-0.3.12-py3-none-any.whl.

File metadata

  • Download URL: spinesUtils-0.3.12-py3-none-any.whl
  • Upload date:
  • Size: 39.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesUtils-0.3.12-py3-none-any.whl
Algorithm Hash digest
SHA256 54aa43e04a704faa8b8658d24e67f3d7be78125e4d0bb08ec3ba327af9e37ced
MD5 fbc63316632810f619e9430525a9c628
BLAKE2b-256 8af38d996999b4becf4b5c0016ae1cfcb6d77b1c18a01702975b1b55e6cf185f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page