Skip to main content

Machine-Learning Toolsets

Project description

spinesUtils -- A Machine-Learning Toolsets

Let you get more done in less time.


This is where all stories begin:

pip install spinesUtils

better CSV dataloader

from spinesUtils import read_csv

your_df = read_csv(
    fp='/path/to/your/file.csv',
    sep=',',  # equal to pandas read_csv.sep
    turbo_method='polars',  # use turbo_method to speed up load time
    chunk_size=None,  # it can be integer if you want to use pandas backend
    transform2low_mem=True,  # it can compresses file to save more memory
    verbose=False
)

better pandas DataFrame insight tools

from spinesUtils import df_preview, classify_samples_dist

df_insight = df_preview(your_df)

df_target_distribution = classify_samples_dist(your_df, target_col=your_df[y_col])

print(df_insight)
print(df_target_distribution)

better dataframe compresses/uncompress tools

# single dataframe
from spinesUtils import transform_dtypes_low_mem, inverse_transform_dtypes

# compresses file to save memory
transform_dtypes_low_mem(your_df, verbose=True)

# uncompress file to python type
inverse_transform_dtypes(your_df, verbose=True, int_dtype=int, float_dtype=float)
# dataframes
import numpy as np
from spinesUtils import transform_batch_dtypes_low_mem, inverse_transform_batch_dtypes

your_dfs = [your_df1, your_df2, your_df3]  # it can be unlimited

# compresses files to save memory
transform_batch_dtypes_low_mem(your_dfs, verbose=True)

# uncompress file to numpy type
inverse_transform_batch_dtypes(your_dfs, verbose=True, int_dtype=np.int32, float_dtype=np.float32)

better train_test_split function

# return numpy.ndarray
from spinesUtils import train_test_split_bigdata

X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)
# return pandas.dataframe
from spinesUtils import train_test_split_bigdata_df

train, valid, test = train_test_split_bigdata_df(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5,
    reset_index=True
)

better imbalanced-data model

from spinesUtils import BinaryBalanceClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import f1_score, recall_score, precision_score

classifier = BinaryBalanceClassifier(meta_estimators=[LGBMClassifier(), LGBMClassifier()])

classifier.fit(your_df[x_cols], your_df[y_col], threshold_search_set=(your_df[x_cols], your_df[y_col]))

print('threshold: ', classifier.auto_threshold)

print(
    'f1:', f1_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'recall:', recall_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'precision:', precision_score(your_df[y_col], classifier.predict(your_df[x_cols]))
)

log for human

from spinesUtils import Logger

your_logger = Logger(name='your_logger',
                     fp='/path/to/your.log',  # If fp = None, the log file will not be saved
                     verbose=True,
                     truncate_file=True,
                     with_time=True)

your_logger.insert2file("test")  # only insert to log file
your_logger.print('test')  # only print to console

# Or you can do it both
your_logger.insert_and_throwout('test')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesUtils-0.3.2.tar.gz (26.7 kB view details)

Uploaded Source

Built Distribution

spinesUtils-0.3.2-py3-none-any.whl (36.4 kB view details)

Uploaded Python 3

File details

Details for the file spinesUtils-0.3.2.tar.gz.

File metadata

  • Download URL: spinesUtils-0.3.2.tar.gz
  • Upload date:
  • Size: 26.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for spinesUtils-0.3.2.tar.gz
Algorithm Hash digest
SHA256 250054f5988504cd9e9c5a3d7550f9ac3e3d43b40df20ec154ea4e0a7f73f4b4
MD5 e1592991c4e71106a148eda9c8a1fa80
BLAKE2b-256 f44dd2dd0cb6986422a7b4aef8ff08d51018d3850d7040a9678164f367014730

See more details on using hashes here.

File details

Details for the file spinesUtils-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: spinesUtils-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 36.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for spinesUtils-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 456ddd045a811bd7d8ff933a893fef3612b8674126cdc9f548cb5251dbbc6c28
MD5 92fa0d773a0bdd909ea00fc3e7fec5fc
BLAKE2b-256 351a91b301d6f4329d85592572701ec40ce91fb8c765eabf1933bdc268537f80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page