Skip to main content

Machine-Learning Toolsets

Project description

spinesUtils -- A Machine-Learning Toolsets

Let you get more done in less time.


This is where all stories begin:

pip install spinesUtils

better CSV dataloader

from spinesUtils import read_csv

your_df = read_csv(
    fp='/path/to/your/file.csv',
    sep=',',  # equal to pandas read_csv.sep
    turbo_method='polars',  # use turbo_method to speed up load time
    chunk_size=None,  # it can be integer if you want to use pandas backend
    transform2low_mem=True,  # it can compresses file to save more memory
    verbose=False
)

better pandas DataFrame insight tools

from spinesUtils import df_preview, classify_samples_dist

df_insight = df_preview(your_df)

df_target_distribution = classify_samples_dist(your_df, target_col=your_df[y_col])

print(df_insight)
print(df_target_distribution)

better dataframe compresses/uncompress tools

# single dataframe
from spinesUtils import transform_dtypes_low_mem, inverse_transform_dtypes

# compresses file to save memory
transform_dtypes_low_mem(your_df, verbose=True)

# uncompress file to python type
inverse_transform_dtypes(your_df, verbose=True, int_dtype=int, float_dtype=float)
# dataframes
import numpy as np
from spinesUtils import transform_batch_dtypes_low_mem, inverse_transform_batch_dtypes

your_dfs = [your_df1, your_df2, your_df3]  # it can be unlimited

# compresses files to save memory
transform_batch_dtypes_low_mem(your_dfs, verbose=True)

# uncompress file to numpy type
inverse_transform_batch_dtypes(your_dfs, verbose=True, int_dtype=np.int32, float_dtype=np.float32)

better train_test_split function

# return numpy.ndarray
from spinesUtils import train_test_split_bigdata

X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)
# return pandas.dataframe
from spinesUtils import train_test_split_bigdata_df

train, valid, test = train_test_split_bigdata_df(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5,
    reset_index=True
)

better imbalanced-data model

from spinesUtils import BinaryBalanceClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import f1_score, recall_score, precision_score

classifier = BinaryBalanceClassifier(meta_estimators=[LGBMClassifier(), LGBMClassifier()])

classifier.fit(your_df[x_cols], your_df[y_col], threshold_search_set=(your_df[x_cols], your_df[y_col]))

print('threshold: ', classifier.auto_threshold)

print(
    'f1:', f1_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'recall:', recall_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'precision:', precision_score(your_df[y_col], classifier.predict(your_df[x_cols]))
)

log for human

from spinesUtils import Logger

your_logger = Logger(name='your_logger',
                     fp='/path/to/your.log',  # If fp = None, the log file will not be saved
                     verbose=True,
                     truncate_file=True,
                     with_time=True)

your_logger.insert2file("test")  # only insert to log file
your_logger.print('test')  # only print to console

# Or you can do it both
your_logger.insert_and_throwout('test')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesUtils-0.3.7.tar.gz (26.8 kB view details)

Uploaded Source

Built Distribution

spinesUtils-0.3.7-py3-none-any.whl (36.9 kB view details)

Uploaded Python 3

File details

Details for the file spinesUtils-0.3.7.tar.gz.

File metadata

  • Download URL: spinesUtils-0.3.7.tar.gz
  • Upload date:
  • Size: 26.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesUtils-0.3.7.tar.gz
Algorithm Hash digest
SHA256 157aad9e089b4d9284c5f1e9c8e1013365be381c4e690cfae843853b8f8c88d8
MD5 b52efa4c7179cb322904d87a2434f1fb
BLAKE2b-256 69f12c533768397eec65a50bf39273647d257a0a1da0590a0266b6be2947ec98

See more details on using hashes here.

File details

Details for the file spinesUtils-0.3.7-py3-none-any.whl.

File metadata

  • Download URL: spinesUtils-0.3.7-py3-none-any.whl
  • Upload date:
  • Size: 36.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesUtils-0.3.7-py3-none-any.whl
Algorithm Hash digest
SHA256 85f4e06689b373f847148195b649f40677da3fda27a68121113b18ce1ab0f211
MD5 68f6d544879c4008562578db21c707ae
BLAKE2b-256 005c9ba34d9be79624f2ffb8bd15c5adfc7e0cdd83c418cc64a30a5862c63039

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page