Skip to main content

Machine-Learning Toolsets

Project description

spinesUtils -- A Machine-Learning Toolsets

Let you get more done in less time.


This is where all stories begin:

pip install spinesUtils

better CSV dataloader

from spinesUtils import read_csv

your_df = read_csv(
    fp='/path/to/your/file.csv',
    sep=',',  # equal to pandas read_csv.sep
    turbo_method='polars',  # use turbo_method to speed up load time
    chunk_size=None,  # it can be integer if you want to use pandas backend
    transform2low_mem=True,  # it can compresses file to save more memory
    verbose=False
)

better pandas DataFrame insight tools

from spinesUtils import df_preview, classify_samples_dist

df_insight = df_preview(your_df)

df_target_distribution = classify_samples_dist(your_df, target_col=your_df[y_col])

print(df_insight)
print(df_target_distribution)

better dataframe compresses/uncompress tools

# single dataframe
from spinesUtils import transform_dtypes_low_mem, inverse_transform_dtypes

# compresses file to save memory
transform_dtypes_low_mem(your_df, verbose=True)

# uncompress file to python type
inverse_transform_dtypes(your_df, verbose=True, int_dtype=int, float_dtype=float)
# dataframes
import numpy as np
from spinesUtils import transform_batch_dtypes_low_mem, inverse_transform_batch_dtypes

your_dfs = [your_df1, your_df2, your_df3]  # it can be unlimited

# compresses files to save memory
transform_batch_dtypes_low_mem(your_dfs, verbose=True)

# uncompress file to numpy type
inverse_transform_batch_dtypes(your_dfs, verbose=True, int_dtype=np.int32, float_dtype=np.float32)

better train_test_split function

# return numpy.ndarray
from spinesUtils import train_test_split_bigdata

X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)
# return pandas.dataframe
from spinesUtils import train_test_split_bigdata_df

train, valid, test = train_test_split_bigdata_df(
    df=your_df, 
    x_cols=x_cols,
    y_col=y_col, 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5,
    reset_index=True
)

better imbalanced-data model

from spinesUtils import BinaryBalanceClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import f1_score, recall_score, precision_score

classifier = BinaryBalanceClassifier(meta_estimators=[LGBMClassifier(), LGBMClassifier()])

classifier.fit(your_df[x_cols], your_df[y_col], threshold_search_set=(your_df[x_cols], your_df[y_col]))

print('threshold: ', classifier.auto_threshold)

print(
    'f1:', f1_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'recall:', recall_score(your_df[y_col], classifier.predict(your_df[x_cols])), 
    'precision:', precision_score(your_df[y_col], classifier.predict(your_df[x_cols]))
)

log for human

from spinesUtils import Logger

your_logger = Logger(name='your_logger',
                     fp='/path/to/your.log',  # If fp = None, the log file will not be saved
                     verbose=True,
                     truncate_file=True,
                     with_time=True)

your_logger.insert2file("test")  # only insert to log file
your_logger.print('test')  # only print to console

# Or you can do it both
your_logger.insert_and_throwout('test')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesUtils-0.3.9.tar.gz (27.4 kB view details)

Uploaded Source

Built Distribution

spinesUtils-0.3.9-py3-none-any.whl (39.8 kB view details)

Uploaded Python 3

File details

Details for the file spinesUtils-0.3.9.tar.gz.

File metadata

  • Download URL: spinesUtils-0.3.9.tar.gz
  • Upload date:
  • Size: 27.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesUtils-0.3.9.tar.gz
Algorithm Hash digest
SHA256 f1b768e49022d9e6cabf3346bc84632f1b888aa7dfa22826f0910ce9886990da
MD5 a2144cf72ed6164db59470244f3ab92d
BLAKE2b-256 9fa616b9b50ed8507aae13a2995885bf028e464f31f3fa15c37dc463cb4fe859

See more details on using hashes here.

File details

Details for the file spinesUtils-0.3.9-py3-none-any.whl.

File metadata

  • Download URL: spinesUtils-0.3.9-py3-none-any.whl
  • Upload date:
  • Size: 39.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for spinesUtils-0.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 5be44fea74dbcc7a24e62343650785a2122ddaeb3cfed9ba3aa3c8418b030177
MD5 29295f1a1b03d3c83862d488dc4181b6
BLAKE2b-256 edb2383c852816b3332f7a612fc1e69838bb3ac3bb6066a9a75b311d2810a95d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page