spinesUtils is a user-friendly toolkit for the machine learning ecosystem.
Project description
spinesUtils
Dedicated to helping users do more in less time.
spinesUtils is a user-friendly toolkit for the machine learning ecosystem, offering ready-to-use features such as
- Logging functionality
- Type checking and parameter generation
- CSV file reading acceleration
- Classifiers for imbalanced data
- Pandas Dataframe data compression
- Pandas DataFrame insight tools
- Large data training and testing set splitting functions
- An intuitive timer.
It is currently undergoing rapid iteration. If you encounter any issues with its functionalities, feel free to raise an issue.
Installation
You can install spinesUtils from PyPI:
pip install spinesUtils
Logger
You can use the Logger class to print your logs without worrying about handler conflicts with the native Python logging module.
This class provides log/debug/info/warning/error/critical methods, where debug/info/warning/error/critical are partial versions of the log method, available for use as needed.
# load spinesUtils module
from spinesUtils.logging import Logger
# create a logger instance, with name "MyLogger", and no file handler, the default level is "INFO"
# You can specify a file path `fp` during instantiation. If not specified, logs will not be written to a file.
logger = Logger(name="MyLogger", fp=None, level="DEBUG")
logger.log("This is an info log emitted by the log function.", level='INFO')
logger.debug("This is an debug message")
logger.info("This is an info message.")
logger.warning("This is an warning message.")
logger.error("This is an error message.")
logger.critical("This is an critical message.")
2024-01-19 15:02:51 - MyLogger - INFO - This is an info log emitted by the log function.
2024-01-19 15:02:51 - MyLogger - DEBUG - This is an debug message
2024-01-19 15:02:51 - MyLogger - INFO - This is an info message.
2024-01-19 15:02:51 - MyLogger - WARNING - This is an warning message.
2024-01-19 15:02:51 - MyLogger - ERROR - This is an error message.
2024-01-19 15:02:51 - MyLogger - CRITICAL - This is an critical message.
Type checking and parameter generation
from spinesUtils.asserts import *
# check parameter type
@ParameterTypeAssert({
'a': (int, float),
'b': (int, float)
})
def add(a, b):
pass
# try to pass a string to the function, and it will raise an ParametersTypeError error
add(a=1, b='2')
---------------------------------------------------------------------------
ParametersTypeError Traceback (most recent call last)
Cell In[2], line 12
9 pass
11 # try to pass a string to the function, and it will raise an ParametersTypeError error
---> 12 add(a=1, b='2')
File ~/projects/spinesUtils/spinesUtils/asserts/_inspect.py:196, in ParameterTypeAssert.__call__.<locals>.wrapper(*args, **kwargs)
194 if mismatched_params:
195 error_msg = self.build_type_error_msg(mismatched_params)
--> 196 raise ParametersTypeError(error_msg)
198 return func(**kwargs)
ParametersTypeError: Function 'add' parameter(s) type mismatch: b only accept '['int', 'float']' type.
# check parameter value
@ParameterValuesAssert({
'a': lambda x: x > 0,
'b': lambda x: x > 0
})
def add(a, b):
pass
# try to pass a negative number to the function, and it will raise an ParametersValueError error
add(a=1, b=-2)
---------------------------------------------------------------------------
ParametersValueError Traceback (most recent call last)
Cell In[3], line 10
7 pass
9 # try to pass a negative number to the function, and it will raise an ParametersValueError error
---> 10 add(a=1, b=-2)
File ~/projects/spinesUtils/spinesUtils/asserts/_inspect.py:258, in ParameterValuesAssert.__call__.<locals>.wrapper(*args, **kwargs)
256 if mismatched_params:
257 error_msg = self.build_values_error_msg(mismatched_params)
--> 258 raise ParametersValueError(error_msg)
260 return func(**kwargs)
ParametersValueError: Function 'add' parameter(s) values mismatch: `b` must in or satisfy ''b': lambda x: x > 0' condition(s).
# generate a dictionary of keyword arguments for a given function using provided arguments
generate_function_kwargs(add, a=1, b=2)
{'a': 1, 'b': 2}
# isinstance function with support for None
augmented_isinstance(1, (int, float, None))
True
# raise_if and raise_if_not functions
raise_if(ValueError, 1 == 1, "test raise_if")
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[6], line 2
1 # raise_if and raise_if_not functions
----> 2 raise_if(ValueError, 1 == 1, "test raise_if")
File ~/projects/spinesUtils/spinesUtils/asserts/_type_and_exceptions.py:115, in raise_if(exception, condition, error_msg)
112 assert issubclass(exception, BaseException), "Exception must be a subclass of BaseException."
114 if condition:
--> 115 raise exception(error_msg)
ValueError: test raise_if
raise_if_not(ZeroDivisionError, 1 != 1, "test raise_if_not")
---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
Cell In[7], line 1
----> 1 raise_if_not(ZeroDivisionError, 1 != 1, "test raise_if_not")
File ~/projects/spinesUtils/spinesUtils/asserts/_type_and_exceptions.py:144, in raise_if_not(exception, condition, error_msg)
141 assert issubclass(exception, BaseException), "Exception must be a subclass of BaseException."
143 if not condition:
--> 144 raise exception(error_msg)
ZeroDivisionError: test raise_if_not
Faster csv reader
from spinesUtils import read_csv
your_df = read_csv(
fp='/path/to/your/file.csv',
sep=',', # equal to pandas read_csv.sep
turbo_method='polars', # use turbo_method to speed up load time
chunk_size=None, # it can be integer if you want to use pandas backend
transform2low_mem=True, # it can compresses file to save more memory
verbose=False
)
Classifiers for imbalanced data
from spinesUtils.models import MultiClassBalanceClassifier
# make a toy dataset
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
dataset = make_classification(
n_samples=10000,
n_features=2,
n_informative=2,
n_redundant=0,
n_repeated=0,
n_classes=3,
n_clusters_per_class=1,
weights=[0.01, 0.05, 0.94],
class_sep=0.8,
random_state=0
)
X, y = dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn.ensemble import RandomForestClassifier
classifier = MultiClassBalanceClassifier(
base_estimator=RandomForestClassifier(n_estimators=100),
n_classes=3,
random_state=0,
verbose=0
)
# fit the classifier
classifier.fit(X_train, y_train)
# predict
y_pred = classifier.predict(X_test)
# print classification report
print(classification_report(y_test, y_pred))
precision recall f1-score support
0 0.74 0.72 0.73 32
1 0.91 0.71 0.80 111
2 0.98 1.00 0.99 1857
accuracy 0.98 2000
macro avg 0.88 0.81 0.84 2000
weighted avg 0.98 0.98 0.98 2000
Pandas dataframe data compression
# make a toy dataset
import pandas as pd
import numpy as np
df = pd.DataFrame({
'a': np.random.randint(0, 100, 100000),
'b': np.random.randint(0, 100, 100000),
'c': np.random.randint(0, 100, 100000),
'd': np.random.randint(0, 100, 100000),
'e': np.random.randint(0, 100, 100000),
'f': np.random.randint(0, 100, 100000),
'g': np.random.randint(0, 100, 100000),
'h': np.random.randint(0, 100, 100000),
'i': np.random.randint(0, 100, 100000),
'j': np.random.randint(0, 100, 100000),
'k': np.random.randint(0, 100, 100000),
'l': np.random.randint(0, 100, 100000),
'm': np.random.randint(0, 100, 100000),
'n': np.random.randint(0, 100, 100000),
'o': np.random.randint(0, 100, 100000),
'p': np.random.randint(0, 100, 100000),
'q': np.random.randint(0, 100, 100000),
'r': np.random.randint(0, 100, 100000),
's': np.random.randint(0, 100, 100000),
't': np.random.randint(0, 100, 100000),
'u': np.random.randint(0, 100, 100000),
'v': np.random.randint(0, 100, 100000),
'w': np.random.randint(0, 100, 100000),
'x': np.random.randint(0, 100, 100000),
'y': np.random.randint(0, 100, 100000),
'z': np.random.randint(0, 100, 100000),
})
# compress dataframe
from spinesUtils import transform_dtypes_low_mem
transform_dtypes_low_mem(df, verbose=True, inplace=True)
Converting ...: 0%| | 0/26 [00:00<?, ?it/s]
[log] INFO - Memory usage before conversion is: 19.84 MB
[log] INFO - Memory usage after conversion is: 2.48 MB
[log] INFO - After conversion, the percentage of memory fluctuation is 87.5 %
# batch compress dataframes
from spinesUtils import transform_batch_dtypes_low_mem
# make some toy datasets
df1 = pd.DataFrame({
'a': np.random.randint(0, 100, 100000),
'b': np.random.randint(0, 100, 100000),
'c': np.random.randint(0, 100, 100000),
'd': np.random.randint(0, 100, 100000),
'e': np.random.randint(0, 100, 100000),
'f': np.random.randint(0, 100, 100000),
'g': np.random.randint(0, 100, 100000),
'h': np.random.randint(0, 100, 100000),
'i': np.random.randint(0, 100, 100000),
'j': np.random.randint(0, 100, 100000),
'k': np.random.randint(0, 100, 100000),
'l': np.random.randint(0, 100, 100000),
'm': np.random.randint(0, 100, 100000),
'n': np.random.randint(0, 100, 100000),
'o': np.random.randint(0, 100, 100000),
'p': np.random.randint(0, 100, 100000),
'q': np.random.randint(0, 100, 100000),
'r': np.random.randint(0, 100, 100000),
's': np.random.randint(0, 100, 100000),
't': np.random.randint(0, 100, 100000),
'u': np.random.randint(0, 100, 100000),
'v': np.random.randint(0, 100, 100000),
'w': np.random.randint(0, 100, 100000),
'x': np.random.randint(0, 100, 100000),
'y': np.random.randint(0, 100, 100000),
'z': np.random.randint(0, 100, 100000),
})
df2 = df1.copy()
df3 = df1.copy()
df4 = df1.copy()
# batch compress dataframes
transform_batch_dtypes_low_mem([df1, df2, df3, df4], verbose=True, inplace=True)
Batch converting ...: 0%| | 0/4 [00:00<?, ?it/s]
[log] INFO - Memory usage before conversion is: 79.35 MB
[log] INFO - Memory usage after conversion is: 9.92 MB
[log] INFO - After conversion, the percentage of memory fluctuation is 87.5 %
Pandas DataFrame insight tools
from spinesUtils import df_preview, classify_samples_dist
# make a toy dataset
import pandas as pd
import numpy as np
df = pd.DataFrame({
'a': np.random.randint(0, 100, 100000),
'b': np.random.randint(0, 100, 100000),
'c': np.random.randint(0, 100, 100000),
'd': np.random.randint(0, 100, 100000),
'e': np.random.randint(0, 100, 100000),
'f': np.random.randint(0, 100, 100000),
'g': np.random.randint(0, 100, 100000),
'h': np.random.randint(0, 100, 100000),
'i': np.random.randint(0, 100, 100000),
'j': np.random.randint(0, 100, 100000),
'k': np.random.randint(0, 100, 100000),
'l': np.random.randint(0, 100, 100000),
'm': np.random.randint(0, 100, 100000),
'n': np.random.randint(0, 100, 100000),
'o': np.random.randint(0, 100, 100000),
'p': np.random.randint(0, 100, 100000),
'q': np.random.randint(0, 100, 100000),
'r': np.random.randint(0, 100, 100000),
's': np.random.randint(0, 100, 100000),
't': np.random.randint(0, 100, 100000),
'u': np.random.randint(0, 100, 100000),
'v': np.random.randint(0, 100, 100000),
'w': np.random.randint(0, 100, 100000),
'x': np.random.randint(0, 100, 100000),
'y': np.random.randint(0, 100, 100000),
'z': np.random.randint(0, 100, 100000),
})
df_insight = df_preview(df)
df_insight
total | na | naPercent | nunique | dtype | max | 75% | median | 25% | min | mean | mode | variation | std | skew | kurt | samples | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 50.0 | 25.0 | 0.0 | 49.53968 | 36 | 0.9892 | 28.848392 | -0.000158 | -1.196434 | (32, 81) |
b | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 49.0 | 24.0 | 0.0 | 49.41822 | 40 | 0.98928 | 28.937601 | 0.005974 | -1.206987 | (76, 28) |
c | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 25.0 | 0.0 | 49.58261 | 82 | 0.98923 | 28.928019 | -0.003537 | -1.202994 | (21, 68) |
d | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 49.0 | 24.0 | 0.0 | 49.46308 | 9 | 0.98906 | 28.886459 | 0.003344 | -1.200654 | (42, 90) |
e | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 49.0 | 25.0 | 0.0 | 49.55014 | 37 | 0.98911 | 28.834041 | 0.003987 | -1.196103 | (15, 59) |
f | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 24.0 | 0.0 | 49.20195 | 4 | 0.98926 | 28.886463 | 0.009183 | -1.203297 | (72, 9) |
g | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 25.0 | 0.0 | 49.62199 | 4 | 0.98919 | 28.849264 | -0.012746 | -1.199283 | (69, 64) |
h | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 25.0 | 0.0 | 49.58739 | 40 | 0.98917 | 28.83744 | -0.004719 | -1.193858 | (30, 79) |
i | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 49.0 | 24.0 | 0.0 | 49.41076 | 10 | 0.98939 | 28.910095 | 0.005218 | -1.207459 | (36, 54) |
j | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 25.0 | 0.0 | 49.45686 | 46 | 0.98909 | 28.816681 | 0.004751 | -1.190756 | (29, 95) |
k | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 50.0 | 25.0 | 0.0 | 49.54948 | 46 | 0.98914 | 28.806187 | -0.003731 | -1.196876 | (32, 94) |
l | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 24.0 | 0.0 | 49.45631 | 20 | 0.98923 | 28.921314 | 0.002344 | -1.205342 | (22, 91) |
m | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 24.0 | 0.0 | 49.43142 | 49 | 0.98901 | 28.852962 | 0.002507 | -1.198267 | (94, 26) |
n | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 24.0 | 0.0 | 49.49325 | 8 | 0.98931 | 28.899022 | 0.000698 | -1.200786 | (46, 50) |
o | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 25.0 | 0.0 | 49.52091 | 4 | 0.98923 | 28.869563 | -0.003987 | -1.202426 | (33, 13) |
p | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 24.0 | 0.0 | 49.40997 | 61 | 0.98918 | 28.900207 | 0.007921 | -1.204621 | (58, 93) |
q | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 25.0 | 0.0 | 49.62826 | 33 | 0.98936 | 28.831896 | -0.003291 | -1.201172 | (82, 31) |
r | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 24.0 | 0.0 | 49.47208 | 60 | 0.98925 | 28.873943 | 0.000515 | -1.202925 | (0, 26) |
s | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 25.0 | 0.0 | 49.64847 | 48 | 0.9893 | 28.853741 | -0.010258 | -1.202701 | (94, 37) |
t | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 50.0 | 25.0 | 0.0 | 49.55305 | 32 | 0.98898 | 28.801028 | -0.001721 | -1.193403 | (85, 10) |
u | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 24.0 | 0.0 | 49.45428 | 80 | 0.98928 | 28.876812 | 0.002018 | -1.201612 | (56, 16) |
v | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 75.0 | 50.0 | 25.0 | 0.0 | 49.59953 | 16 | 0.98945 | 28.891313 | -0.006261 | -1.199011 | (60, 39) |
w | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 24.0 | 0.0 | 49.34131 | 4 | 0.98915 | 28.925175 | 0.009523 | -1.203308 | (78, 96) |
x | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 49.0 | 25.0 | 0.0 | 49.45791 | 95 | 0.98933 | 28.860322 | 0.007199 | -1.198962 | (93, 79) |
y | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 50.0 | 25.0 | 0.0 | 49.58517 | 34 | 0.98929 | 28.765474 | -0.000497 | -1.193016 | (80, 42) |
z | 100000 | 0 | 0.0 | 100 | int64 | 99.0 | 74.0 | 50.0 | 24.0 | 0.0 | 49.44355 | 21 | 0.98876 | 28.85751 | 0.000819 | -1.201063 | (25, 25) |
Large data training and testing set splitting functions
# make a toy dataset
import pandas as pd
import numpy as np
df = pd.DataFrame({
'a': np.random.randint(0, 100, 100000),
'b': np.random.randint(0, 100, 100000),
'c': np.random.randint(0, 100, 100000),
'd': np.random.randint(0, 100, 100000),
'e': np.random.randint(0, 100, 100000),
'f': np.random.randint(0, 100, 100000),
'g': np.random.randint(0, 100, 100000),
'h': np.random.randint(0, 100, 100000),
'i': np.random.randint(0, 100, 100000),
'j': np.random.randint(0, 100, 100000),
'k': np.random.randint(0, 100, 100000),
'l': np.random.randint(0, 100, 100000),
'm': np.random.randint(0, 100, 100000),
'n': np.random.randint(0, 100, 100000),
'o': np.random.randint(0, 100, 100000),
'p': np.random.randint(0, 100, 100000),
'q': np.random.randint(0, 100, 100000),
'r': np.random.randint(0, 100, 100000),
's': np.random.randint(0, 100, 100000),
't': np.random.randint(0, 100, 100000),
'u': np.random.randint(0, 100, 100000),
'v': np.random.randint(0, 100, 100000),
'w': np.random.randint(0, 100, 100000),
'x': np.random.randint(0, 100, 100000),
'y': np.random.randint(0, 100, 100000),
'z': np.random.randint(0, 100, 100000),
})
# split dataframe into training and testing sets
# return numpy.ndarray
from spinesUtils import train_test_split_bigdata
from spinesUtils.feature_tools import get_x_cols
X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
df=df,
x_cols=get_x_cols(df, y_col='a'),
y_col='a',
shuffle=True,
return_valid=True,
train_size=0.8,
valid_size=0.5
)
print(X_train.shape, X_valid.shape, X_test.shape, y_train.shape, y_valid.shape, y_test.shape)
X_train[:5]
(80000, 25) (80000,) (10000, 25) (10000,) (10000, 25) (10000,)
array([[45, 83, 43, 94, 1, 86, 56, 0, 78, 60, 79, 42, 24, 43, 94, 83,
45, 50, 59, 50, 17, 99, 40, 95, 70],
[ 4, 81, 9, 25, 54, 18, 14, 6, 17, 39, 0, 36, 82, 33, 11, 76,
92, 29, 33, 50, 44, 11, 87, 86, 31],
[72, 82, 52, 96, 55, 89, 35, 71, 48, 73, 34, 19, 53, 89, 46, 57,
84, 67, 10, 40, 50, 61, 10, 76, 84],
[46, 45, 79, 53, 80, 85, 58, 65, 26, 49, 46, 97, 83, 47, 77, 97,
26, 4, 33, 79, 36, 65, 50, 94, 87],
[36, 7, 46, 10, 11, 33, 3, 7, 82, 29, 28, 2, 42, 89, 42, 66,
79, 51, 49, 43, 63, 14, 13, 74, 26]])
# return pandas.DataFrame
from spinesUtils import train_test_split_bigdata_df
from spinesUtils.feature_tools import get_x_cols
train_df, valid_df, test_df = train_test_split_bigdata_df(
df=df,
x_cols=get_x_cols(df, y_col='a'),
y_col='a',
shuffle=True,
return_valid=True,
train_size=0.8,
valid_size=0.5
)
print(train_df.shape, valid_df.shape, test_df.shape)
train_df.head()
(8000000, 26) (1000000, 26) (1000000, 26)
b | c | d | e | f | g | h | i | j | k | ... | r | s | t | u | v | w | x | y | z | a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 14 | 67 | 41 | 87 | 68 | 87 | 27 | 67 | 26 | 62 | ... | 63 | 43 | 77 | 4 | 6 | 72 | 5 | 63 | 73 | 27 |
1 | 47 | 37 | 43 | 98 | 55 | 68 | 82 | 48 | 37 | 35 | ... | 99 | 92 | 23 | 44 | 92 | 14 | 54 | 95 | 58 | 59 |
2 | 52 | 97 | 71 | 62 | 18 | 54 | 22 | 2 | 57 | 93 | ... | 82 | 6 | 61 | 41 | 24 | 40 | 54 | 11 | 9 | 5 |
3 | 48 | 45 | 22 | 46 | 32 | 37 | 6 | 13 | 42 | 67 | ... | 9 | 1 | 65 | 84 | 11 | 86 | 54 | 22 | 89 | 85 |
4 | 26 | 23 | 55 | 31 | 61 | 72 | 68 | 82 | 6 | 19 | ... | 13 | 44 | 3 | 93 | 66 | 53 | 75 | 93 | 53 | 43 |
5 rows × 26 columns
# performances comparison
from sklearn.model_selection import train_test_split
from spinesUtils import train_test_split_bigdata, train_test_split_bigdata_df
from spinesUtils.feature_tools import get_x_cols
# make a toy dataset
import pandas as pd
import numpy as np
df = pd.DataFrame({
'a': np.random.randint(0, 100, 10000),
'b': np.random.randint(0, 100, 10000),
'c': np.random.randint(0, 100, 10000),
'd': np.random.randint(0, 100, 10000),
'e': np.random.randint(0, 100, 10000),
'f': np.random.randint(0, 100, 10000),
'g': np.random.randint(0, 100, 10000),
'h': np.random.randint(0, 100, 10000),
'i': np.random.randint(0, 100, 10000),
'j': np.random.randint(0, 100, 10000),
'k': np.random.randint(0, 100, 10000),
'l': np.random.randint(0, 100, 10000),
'm': np.random.randint(0, 100, 10000),
'n': np.random.randint(0, 100, 10000),
'o': np.random.randint(0, 100, 10000),
'p': np.random.randint(0, 100, 10000),
'q': np.random.randint(0, 100, 10000),
'r': np.random.randint(0, 100, 10000),
's': np.random.randint(0, 100, 10000),
't': np.random.randint(0, 100, 10000),
'u': np.random.randint(0, 100, 10000),
'v': np.random.randint(0, 100, 10000),
'w': np.random.randint(0, 100, 10000),
'x': np.random.randint(0, 100, 10000),
'y': np.random.randint(0, 100, 10000),
'z': np.random.randint(0, 100, 10000),
})
# define a function to split a valid set for sklearn train_test_split
def train_test_split_sklearn(df, x_cols, y_col, shuffle, train_size, valid_size):
X_train, X_test, y_train, y_test = train_test_split(df[x_cols], df[y_col], test_size=1-train_size, random_state=0, shuffle=shuffle)
X_valid, X_test, y_valid, y_test = train_test_split(X_test, y_test, test_size=valid_size, random_state=0, shuffle=shuffle)
return X_train, X_valid, X_test, y_train, y_valid, y_test
%timeit X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_sklearn(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, train_size=0.8, valid_size=0.5)
%timeit X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, return_valid=True, train_size=0.8, valid_size=0.5)
%timeit train_df, valid_df, test_df = train_test_split_bigdata_df(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, return_valid=True, train_size=0.8, valid_size=0.5)
1.28 ms ± 20.5 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
1.05 ms ± 14.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
1.36 ms ± 11.7 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
An intuitive timer
from spinesUtils.timer import Timer
# create a timer instance
timer = Timer()
# start the timer
timer.start()
# do something
for i in range(10):
# timer sleep for 1 second
timer.sleep(1)
# print the elapsed time from last sleep
print("Elapsed time: {} seconds".format(timer.last_timestamp_diff()))
# print the elapsed time
print("Total elapsed time: {} seconds".format(timer.total_elapsed_time()))
# stop the timer
timer.end()
Elapsed time: 1.0117900371551514 seconds
Elapsed time: 2.016140937805176 seconds
Elapsed time: 3.0169479846954346 seconds
Elapsed time: 4.0224690437316895 seconds
Elapsed time: 5.027086019515991 seconds
Elapsed time: 6.0309507846832275 seconds
Elapsed time: 7.035104036331177 seconds
Elapsed time: 8.040709972381592 seconds
Elapsed time: 9.042311906814575 seconds
Elapsed time: 10.046867847442627 seconds
Total elapsed time: 10.047839879989624 seconds
10.047943830490112
from spinesUtils.timer import Timer
# you can also use the timer as a context manager
t = Timer()
with t.session():
t.sleep(1)
print("Last step elapsed time:", round(t.last_timestamp_diff(), 2), 'seconds')
t.middle_point()
t.sleep(2)
print("Last step elapsed time:", round(t.last_timestamp_diff(), 2), 'seconds')
total_elapsed_time = t.total_elapsed_time()
print("Total Time:", round(total_elapsed_time, 2), 'seconds')
Last step elapsed time: 1.01 seconds
Last step elapsed time: 2.01 seconds
Total Time: 3.01 seconds
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file spinesutils-0.4.3.tar.gz
.
File metadata
- Download URL: spinesutils-0.4.3.tar.gz
- Upload date:
- Size: 48.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0fe38b3c1c0bc890bd38b59c44653e607f83e41d3c0e58b0a27f839e0620528c |
|
MD5 | 6ec9c06639ff74c97e68aa1476dc7fd3 |
|
BLAKE2b-256 | e26a9bce9a64e712ffb2565f07584e9adfc980b8a1fd5c12664f4d39356e6830 |
File details
Details for the file spinesUtils-0.4.3-py3-none-any.whl
.
File metadata
- Download URL: spinesUtils-0.4.3-py3-none-any.whl
- Upload date:
- Size: 42.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac157081a9c3b3a7883c6ff0ec8928294855d3f2212f71e47b393d24069ff70a |
|
MD5 | 1aa1f21163e432bd56e699530fba88e8 |
|
BLAKE2b-256 | 8ad25bb82b82a747f6e8541f8062a30b139f74b03d9d43ab8a67669df2c214ca |