Skip to main content

spinesUtils is a user-friendly toolkit for the machine learning ecosystem.

Project description

spinesUtils

Dedicated to helping users do more in less time.

spinesUtils is a user-friendly toolkit for the machine learning ecosystem, offering ready-to-use features such as

  • Logging functionality
  • Type checking and parameter generation
  • CSV file reading acceleration
  • Classifiers for imbalanced data
  • Pandas Dataframe data compression
  • Pandas DataFrame insight tools
  • Large data training and testing set splitting functions
  • An intuitive timer.

It is currently undergoing rapid iteration. If you encounter any issues with its functionalities, feel free to raise an issue.

Installation

You can install spinesUtils from PyPI:

pip install spinesUtils

Logger

You can use the Logger class to print your logs without worrying about handler conflicts with the native Python logging module.

This class provides log/debug/info/warning/error/critical methods, where debug/info/warning/error/critical are partial versions of the log method, available for use as needed.

# load spinesUtils module
from spinesUtils.logging import Logger

# create a logger instance, with name "MyLogger", and no file handler, the default level is "INFO"
# You can specify a file path `fp` during instantiation. If not specified, logs will not be written to a file.
logger = Logger(name="MyLogger", fp=None, level="DEBUG")

logger.log("This is an info log emitted by the log function.", level='INFO')
logger.debug("This is an debug message")
logger.info("This is an info message.")
logger.warning("This is an warning message.")
logger.error("This is an error message.")
logger.critical("This is an critical message.")
2024-01-19 15:02:51 - MyLogger - INFO - This is an info log emitted by the log function.
2024-01-19 15:02:51 - MyLogger - DEBUG - This is an debug message
2024-01-19 15:02:51 - MyLogger - INFO - This is an info message.
2024-01-19 15:02:51 - MyLogger - WARNING - This is an warning message.
2024-01-19 15:02:51 - MyLogger - ERROR - This is an error message.
2024-01-19 15:02:51 - MyLogger - CRITICAL - This is an critical message.

Type checking and parameter generation

from spinesUtils.asserts import *

# check parameter type
@ParameterTypeAssert({
    'a': (int, float),
    'b': (int, float)
})
def add(a, b):
    pass

# try to pass a string to the function, and it will raise an ParametersTypeError error
add(a=1, b='2')
---------------------------------------------------------------------------

ParametersTypeError                       Traceback (most recent call last)

Cell In[2], line 12
      9     pass
     11 # try to pass a string to the function, and it will raise an ParametersTypeError error
---> 12 add(a=1, b='2')


File ~/projects/spinesUtils/spinesUtils/asserts/_inspect.py:196, in ParameterTypeAssert.__call__.<locals>.wrapper(*args, **kwargs)
    194 if mismatched_params:
    195     error_msg = self.build_type_error_msg(mismatched_params)
--> 196     raise ParametersTypeError(error_msg)
    198 return func(**kwargs)


ParametersTypeError: Function 'add' parameter(s) type mismatch: b only accept '['int', 'float']' type.
# check parameter value
@ParameterValuesAssert({
    'a': lambda x: x > 0,
    'b': lambda x: x > 0
})
def add(a, b):
    pass

# try to pass a negative number to the function, and it will raise an ParametersValueError error
add(a=1, b=-2)
---------------------------------------------------------------------------

ParametersValueError                      Traceback (most recent call last)

Cell In[3], line 10
      7     pass
      9 # try to pass a negative number to the function, and it will raise an ParametersValueError error
---> 10 add(a=1, b=-2)


File ~/projects/spinesUtils/spinesUtils/asserts/_inspect.py:258, in ParameterValuesAssert.__call__.<locals>.wrapper(*args, **kwargs)
    256 if mismatched_params:
    257     error_msg = self.build_values_error_msg(mismatched_params)
--> 258     raise ParametersValueError(error_msg)
    260 return func(**kwargs)


ParametersValueError: Function 'add' parameter(s) values mismatch: `b` must in or satisfy ''b': lambda x: x > 0' condition(s).
# generate a dictionary of keyword arguments for a given function using provided arguments
generate_function_kwargs(add, a=1, b=2)
{'a': 1, 'b': 2}
# isinstance function with support for None
augmented_isinstance(1, (int, float, None))
True
# raise_if and raise_if_not functions
raise_if(ValueError, 1 == 1, "test raise_if")
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

Cell In[6], line 2
      1 # raise_if and raise_if_not functions
----> 2 raise_if(ValueError, 1 == 1, "test raise_if")


File ~/projects/spinesUtils/spinesUtils/asserts/_type_and_exceptions.py:115, in raise_if(exception, condition, error_msg)
    112 assert issubclass(exception, BaseException), "Exception must be a subclass of BaseException."
    114 if condition:
--> 115     raise exception(error_msg)


ValueError: test raise_if
raise_if_not(ZeroDivisionError, 1 != 1, "test raise_if_not")
---------------------------------------------------------------------------

ZeroDivisionError                         Traceback (most recent call last)

Cell In[7], line 1
----> 1 raise_if_not(ZeroDivisionError, 1 != 1, "test raise_if_not")


File ~/projects/spinesUtils/spinesUtils/asserts/_type_and_exceptions.py:144, in raise_if_not(exception, condition, error_msg)
    141 assert issubclass(exception, BaseException), "Exception must be a subclass of BaseException."
    143 if not condition:
--> 144     raise exception(error_msg)


ZeroDivisionError: test raise_if_not

Faster csv reader

from spinesUtils import read_csv

your_df = read_csv(
    fp='/path/to/your/file.csv',
    sep=',',  # equal to pandas read_csv.sep
    turbo_method='polars',  # use turbo_method to speed up load time
    chunk_size=None,  # it can be integer if you want to use pandas backend
    transform2low_mem=True,  # it can compresses file to save more memory
    verbose=False
)

Classifiers for imbalanced data

from spinesUtils.models import MultiClassBalanceClassifier
# make a toy dataset
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

dataset = make_classification(
    n_samples=10000,
    n_features=2,
    n_informative=2,
    n_redundant=0,
    n_repeated=0,
    n_classes=3,
    n_clusters_per_class=1,
    weights=[0.01, 0.05, 0.94],
    class_sep=0.8,
    random_state=0
)

X, y = dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn.ensemble import RandomForestClassifier

classifier = MultiClassBalanceClassifier(
    base_estimator=RandomForestClassifier(n_estimators=100),
    n_classes=3,
    random_state=0,
    verbose=0
)

# fit the classifier
classifier.fit(X_train, y_train)

# predict
y_pred = classifier.predict(X_test)

# print classification report
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

           0       0.74      0.72      0.73        32
           1       0.91      0.71      0.80       111
           2       0.98      1.00      0.99      1857

    accuracy                           0.98      2000
   macro avg       0.88      0.81      0.84      2000
weighted avg       0.98      0.98      0.98      2000

Pandas dataframe data compression

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

# compress dataframe
from spinesUtils import transform_dtypes_low_mem

transform_dtypes_low_mem(df, verbose=True, inplace=True)
Converting ...:   0%|          | 0/26 [00:00<?, ?it/s]


[log] INFO - Memory usage before conversion is: 19.84 MB  
[log] INFO - Memory usage after conversion is: 2.48 MB  
[log] INFO - After conversion, the percentage of memory fluctuation is 87.5 %
# batch compress dataframes
from spinesUtils import transform_batch_dtypes_low_mem

# make some toy datasets
df1 = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

df2 = df1.copy()
df3 = df1.copy()
df4 = df1.copy()

# batch compress dataframes
transform_batch_dtypes_low_mem([df1, df2, df3, df4], verbose=True, inplace=True)
Batch converting ...:   0%|          | 0/4 [00:00<?, ?it/s]


[log] INFO - Memory usage before conversion is: 79.35 MB  
[log] INFO - Memory usage after conversion is: 9.92 MB  
[log] INFO - After conversion, the percentage of memory fluctuation is 87.5 %

Pandas DataFrame insight tools

from spinesUtils import df_preview, classify_samples_dist

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

df_insight = df_preview(df)

df_insight
total na naPercent nunique dtype max 75% median 25% min mean mode variation std skew kurt samples
a 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.53968 36 0.9892 28.848392 -0.000158 -1.196434 (32, 81)
b 100000 0 0.0 100 int64 99.0 75.0 49.0 24.0 0.0 49.41822 40 0.98928 28.937601 0.005974 -1.206987 (76, 28)
c 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.58261 82 0.98923 28.928019 -0.003537 -1.202994 (21, 68)
d 100000 0 0.0 100 int64 99.0 75.0 49.0 24.0 0.0 49.46308 9 0.98906 28.886459 0.003344 -1.200654 (42, 90)
e 100000 0 0.0 100 int64 99.0 75.0 49.0 25.0 0.0 49.55014 37 0.98911 28.834041 0.003987 -1.196103 (15, 59)
f 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.20195 4 0.98926 28.886463 0.009183 -1.203297 (72, 9)
g 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.62199 4 0.98919 28.849264 -0.012746 -1.199283 (69, 64)
h 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.58739 40 0.98917 28.83744 -0.004719 -1.193858 (30, 79)
i 100000 0 0.0 100 int64 99.0 75.0 49.0 24.0 0.0 49.41076 10 0.98939 28.910095 0.005218 -1.207459 (36, 54)
j 100000 0 0.0 100 int64 99.0 74.0 49.0 25.0 0.0 49.45686 46 0.98909 28.816681 0.004751 -1.190756 (29, 95)
k 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.54948 46 0.98914 28.806187 -0.003731 -1.196876 (32, 94)
l 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.45631 20 0.98923 28.921314 0.002344 -1.205342 (22, 91)
m 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.43142 49 0.98901 28.852962 0.002507 -1.198267 (94, 26)
n 100000 0 0.0 100 int64 99.0 75.0 50.0 24.0 0.0 49.49325 8 0.98931 28.899022 0.000698 -1.200786 (46, 50)
o 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.52091 4 0.98923 28.869563 -0.003987 -1.202426 (33, 13)
p 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.40997 61 0.98918 28.900207 0.007921 -1.204621 (58, 93)
q 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.62826 33 0.98936 28.831896 -0.003291 -1.201172 (82, 31)
r 100000 0 0.0 100 int64 99.0 75.0 50.0 24.0 0.0 49.47208 60 0.98925 28.873943 0.000515 -1.202925 (0, 26)
s 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.64847 48 0.9893 28.853741 -0.010258 -1.202701 (94, 37)
t 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.55305 32 0.98898 28.801028 -0.001721 -1.193403 (85, 10)
u 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.45428 80 0.98928 28.876812 0.002018 -1.201612 (56, 16)
v 100000 0 0.0 100 int64 99.0 75.0 50.0 25.0 0.0 49.59953 16 0.98945 28.891313 -0.006261 -1.199011 (60, 39)
w 100000 0 0.0 100 int64 99.0 74.0 49.0 24.0 0.0 49.34131 4 0.98915 28.925175 0.009523 -1.203308 (78, 96)
x 100000 0 0.0 100 int64 99.0 74.0 49.0 25.0 0.0 49.45791 95 0.98933 28.860322 0.007199 -1.198962 (93, 79)
y 100000 0 0.0 100 int64 99.0 74.0 50.0 25.0 0.0 49.58517 34 0.98929 28.765474 -0.000497 -1.193016 (80, 42)
z 100000 0 0.0 100 int64 99.0 74.0 50.0 24.0 0.0 49.44355 21 0.98876 28.85751 0.000819 -1.201063 (25, 25)

Large data training and testing set splitting functions

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 100000),
    'b': np.random.randint(0, 100, 100000),
    'c': np.random.randint(0, 100, 100000),
    'd': np.random.randint(0, 100, 100000),
    'e': np.random.randint(0, 100, 100000),
    'f': np.random.randint(0, 100, 100000),
    'g': np.random.randint(0, 100, 100000),
    'h': np.random.randint(0, 100, 100000),
    'i': np.random.randint(0, 100, 100000),
    'j': np.random.randint(0, 100, 100000),
    'k': np.random.randint(0, 100, 100000),
    'l': np.random.randint(0, 100, 100000),
    'm': np.random.randint(0, 100, 100000),
    'n': np.random.randint(0, 100, 100000),
    'o': np.random.randint(0, 100, 100000),
    'p': np.random.randint(0, 100, 100000),
    'q': np.random.randint(0, 100, 100000),
    'r': np.random.randint(0, 100, 100000),
    's': np.random.randint(0, 100, 100000),
    't': np.random.randint(0, 100, 100000),
    'u': np.random.randint(0, 100, 100000),
    'v': np.random.randint(0, 100, 100000),
    'w': np.random.randint(0, 100, 100000),
    'x': np.random.randint(0, 100, 100000),
    'y': np.random.randint(0, 100, 100000),
    'z': np.random.randint(0, 100, 100000),
})

# split dataframe into training and testing sets

# return numpy.ndarray
from spinesUtils import train_test_split_bigdata
from spinesUtils.feature_tools import get_x_cols

X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(
    df=df, 
    x_cols=get_x_cols(df, y_col='a'),
    y_col='a', 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)

print(X_train.shape, X_valid.shape, X_test.shape, y_train.shape, y_valid.shape, y_test.shape)
X_train[:5]
(80000, 25) (80000,) (10000, 25) (10000,) (10000, 25) (10000,)





array([[45, 83, 43, 94,  1, 86, 56,  0, 78, 60, 79, 42, 24, 43, 94, 83,
        45, 50, 59, 50, 17, 99, 40, 95, 70],
       [ 4, 81,  9, 25, 54, 18, 14,  6, 17, 39,  0, 36, 82, 33, 11, 76,
        92, 29, 33, 50, 44, 11, 87, 86, 31],
       [72, 82, 52, 96, 55, 89, 35, 71, 48, 73, 34, 19, 53, 89, 46, 57,
        84, 67, 10, 40, 50, 61, 10, 76, 84],
       [46, 45, 79, 53, 80, 85, 58, 65, 26, 49, 46, 97, 83, 47, 77, 97,
        26,  4, 33, 79, 36, 65, 50, 94, 87],
       [36,  7, 46, 10, 11, 33,  3,  7, 82, 29, 28,  2, 42, 89, 42, 66,
        79, 51, 49, 43, 63, 14, 13, 74, 26]])
# return pandas.DataFrame
from spinesUtils import train_test_split_bigdata_df
from spinesUtils.feature_tools import get_x_cols

train_df, valid_df, test_df = train_test_split_bigdata_df(
    df=df, 
    x_cols=get_x_cols(df, y_col='a'),
    y_col='a', 
    shuffle=True,
    return_valid=True,
    train_size=0.8,
    valid_size=0.5
)

print(train_df.shape, valid_df.shape, test_df.shape)
train_df.head()
(8000000, 26) (1000000, 26) (1000000, 26)
b c d e f g h i j k ... r s t u v w x y z a
0 14 67 41 87 68 87 27 67 26 62 ... 63 43 77 4 6 72 5 63 73 27
1 47 37 43 98 55 68 82 48 37 35 ... 99 92 23 44 92 14 54 95 58 59
2 52 97 71 62 18 54 22 2 57 93 ... 82 6 61 41 24 40 54 11 9 5
3 48 45 22 46 32 37 6 13 42 67 ... 9 1 65 84 11 86 54 22 89 85
4 26 23 55 31 61 72 68 82 6 19 ... 13 44 3 93 66 53 75 93 53 43

5 rows × 26 columns

# performances comparison
from sklearn.model_selection import train_test_split
from spinesUtils import train_test_split_bigdata, train_test_split_bigdata_df
from spinesUtils.feature_tools import get_x_cols

# make a toy dataset
import pandas as pd
import numpy as np

df = pd.DataFrame({
    'a': np.random.randint(0, 100, 10000),
    'b': np.random.randint(0, 100, 10000),
    'c': np.random.randint(0, 100, 10000),
    'd': np.random.randint(0, 100, 10000),
    'e': np.random.randint(0, 100, 10000),
    'f': np.random.randint(0, 100, 10000),
    'g': np.random.randint(0, 100, 10000),
    'h': np.random.randint(0, 100, 10000),
    'i': np.random.randint(0, 100, 10000),
    'j': np.random.randint(0, 100, 10000),
    'k': np.random.randint(0, 100, 10000),
    'l': np.random.randint(0, 100, 10000),
    'm': np.random.randint(0, 100, 10000),
    'n': np.random.randint(0, 100, 10000),
    'o': np.random.randint(0, 100, 10000),
    'p': np.random.randint(0, 100, 10000),
    'q': np.random.randint(0, 100, 10000),
    'r': np.random.randint(0, 100, 10000),
    's': np.random.randint(0, 100, 10000),
    't': np.random.randint(0, 100, 10000),
    'u': np.random.randint(0, 100, 10000),
    'v': np.random.randint(0, 100, 10000),
    'w': np.random.randint(0, 100, 10000),
    'x': np.random.randint(0, 100, 10000),
    'y': np.random.randint(0, 100, 10000),
    'z': np.random.randint(0, 100, 10000),
})

# define a function to split a valid set for sklearn train_test_split
def train_test_split_sklearn(df, x_cols, y_col, shuffle, train_size, valid_size):
    X_train, X_test, y_train, y_test = train_test_split(df[x_cols], df[y_col], test_size=1-train_size, random_state=0, shuffle=shuffle)
    X_valid, X_test, y_valid, y_test = train_test_split(X_test, y_test, test_size=valid_size, random_state=0, shuffle=shuffle)
    return X_train, X_valid, X_test, y_train, y_valid, y_test

%timeit X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_sklearn(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, train_size=0.8, valid_size=0.5)
%timeit X_train, X_valid, X_test, y_train, y_valid, y_test = train_test_split_bigdata(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, return_valid=True, train_size=0.8, valid_size=0.5)
%timeit train_df, valid_df, test_df = train_test_split_bigdata_df(df=df, x_cols=get_x_cols(df, y_col='a'), y_col='a', shuffle=True, return_valid=True, train_size=0.8, valid_size=0.5)
1.28 ms ± 20.5 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
1.05 ms ± 14.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
1.36 ms ± 11.7 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

An intuitive timer

from spinesUtils.timer import Timer

# create a timer instance
timer = Timer()

# start the timer
timer.start()

# do something
for i in range(10):
    # timer sleep for 1 second
    timer.sleep(1)
    # print the elapsed time from last sleep
    print("Elapsed time: {} seconds".format(timer.last_timestamp_diff()))

# print the elapsed time
print("Total elapsed time: {} seconds".format(timer.total_elapsed_time()))

# stop the timer
timer.end()
Elapsed time: 1.0117900371551514 seconds
Elapsed time: 2.016140937805176 seconds
Elapsed time: 3.0169479846954346 seconds
Elapsed time: 4.0224690437316895 seconds
Elapsed time: 5.027086019515991 seconds
Elapsed time: 6.0309507846832275 seconds
Elapsed time: 7.035104036331177 seconds
Elapsed time: 8.040709972381592 seconds
Elapsed time: 9.042311906814575 seconds
Elapsed time: 10.046867847442627 seconds
Total elapsed time: 10.047839879989624 seconds





10.047943830490112
from spinesUtils.timer import Timer

# you can also use the timer as a context manager
t = Timer()
with t.session():
    t.sleep(1)
    print("Last step elapsed time:", round(t.last_timestamp_diff(), 2), 'seconds')
    t.middle_point()
    t.sleep(2)
    print("Last step elapsed time:", round(t.last_timestamp_diff(), 2), 'seconds')
    
    total_elapsed_time = t.total_elapsed_time()
    
print("Total Time:", round(total_elapsed_time, 2), 'seconds')
Last step elapsed time: 1.01 seconds
Last step elapsed time: 2.01 seconds
Total Time: 3.01 seconds

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spinesutils-0.4.1.tar.gz (47.7 kB view hashes)

Uploaded Source

Built Distribution

spinesUtils-0.4.1-py3-none-any.whl (42.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page