Skip to main content

SpKit: Signal Processing toolkit

Project description

Signal Processing toolkit

Links: Github | PyPi - project


Table of contents


Installation

Requirement: numpy, matplotlib, scipy.stats, scikit-learn

with pip

pip install spkit

Build from the source

Download the repository or clone it with git, after cd in directory build it from source with

python setup.py install

Functions list

Signal Processing Techniques

Information Theory functions for real valued signals

  • Entropy : Shannon entropy, Rényi entropy of order α, Collision entropy
  • Joint entropy
  • Conditional entropy
  • Mutual Information
  • Cross entropy
  • Kullback–Leibler divergence
  • Computation of optimal bin size for histogram using FD-rule
  • Plot histogram with optimal bin size

Matrix Decomposition

  • SVD
  • ICA using InfoMax, Extended-InfoMax, FastICA & Picard

Linear Feedback Shift Register

  • pylfsr

Continuase Wavelet Transform and other functions comming soon..

Machine Learning models - with visualizations

  • Logistic Regression
  • Naive Bayes
  • Decision Trees
  • DeepNet (to be updated)

Examples

Information Theory

View in notebook

import numpy as np
import matplotlib.pyplot as plt
import spkit as sp

x = np.random.rand(10000)
y = np.random.randn(10000)

#Shannan entropy
H_x= sp.entropy(x,alpha=1)
H_y= sp.entropy(y,alpha=1)

#Rényi entropy
Hr_x= sp.entropy(x,alpha=2)
Hr_y= sp.entropy(y,alpha=2)

H_xy= sp.entropy_joint(x,y)

H_x1y= sp.entropy_cond(x,y)
H_y1x= sp.entropy_cond(y,x)

I_xy = sp.mutual_Info(x,y)

H_xy_cross= sp.entropy_cross(x,y)

D_xy= sp.entropy_kld(x,y)


print('Shannan entropy')
print('Entropy of x: H(x) = ',H_x)
print('Entropy of y: H(y) = ',H_y)
print('-')
print('Rényi entropy')
print('Entropy of x: H(x) = ',Hr_x)
print('Entropy of y: H(y) = ',Hr_y)
print('-')
print('Mutual Information I(x,y) = ',I_xy)
print('Joint Entropy H(x,y) = ',H_xy)
print('Conditional Entropy of : H(x|y) = ',H_x1y)
print('Conditional Entropy of : H(y|x) = ',H_y1x)
print('-')
print('Cross Entropy of : H(x,y) = :',H_xy_cross)
print('Kullback–Leibler divergence : Dkl(x,y) = :',D_xy)



plt.figure(figsize=(12,5))
plt.subplot(121)
sp.HistPlot(x,show=False)

plt.subplot(122)
sp.HistPlot(y,show=False)
plt.show()

ICA

View in notebook

from spkit import ICA
from spkit.data import load_data
X,ch_names = load_data.eegSample()

x = X[128*10:128*12,:]
t = np.arange(x.shape[0])/128.0

ica = ICA(n_components=14,method='fastica')
ica.fit(x.T)
s1 = ica.transform(x.T)

ica = ICA(n_components=14,method='infomax')
ica.fit(x.T)
s2 = ica.transform(x.T)

ica = ICA(n_components=14,method='picard')
ica.fit(x.T)
s3 = ica.transform(x.T)

ica = ICA(n_components=14,method='extended-infomax')
ica.fit(x.T)
s4 = ica.transform(x.T)

Machine Learning

  1. Logistic Regression - View in notebook
  2. Naive Bayes - View in notebook
  3. Decision Trees - View in notebook

**view in repository **

LFSR

import numpy as np
from spkit.pylfsr import LFSR
## Example 1  ## 5 bit LFSR with x^5 + x^2 + 1
L = LFSR() 
L.info()
L.next()
L.runKCycle(10)
L.runFullCycle()
L.info()
tempseq = L.runKCycle(10000)    # generate 10000 bits from current state

Contacts:

PhD Student: Queen Mary University of London & University of Genoa


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spkit-0.0.2.tar.gz (31.3 kB view details)

Uploaded Source

Built Distribution

spkit-0.0.2-py3-none-any.whl (30.6 kB view details)

Uploaded Python 3

File details

Details for the file spkit-0.0.2.tar.gz.

File metadata

  • Download URL: spkit-0.0.2.tar.gz
  • Upload date:
  • Size: 31.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for spkit-0.0.2.tar.gz
Algorithm Hash digest
SHA256 33d96c406871f120291d764c7f5b2f3ccb98fdb84c2090560cb0a1fab375a91d
MD5 b2fac5b3a50d5046218fb34a51712b25
BLAKE2b-256 352e94e178632850ce6f796efeca232ea8121a5ebe867fefdb6ea0b06c98d509

See more details on using hashes here.

File details

Details for the file spkit-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: spkit-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 30.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for spkit-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 41b6959cced82cc28cef320b40ec3ff93fd4b7d93d0f906dc5e37160bd535153
MD5 36b779f9d469b4d200680d56ae4e0194
BLAKE2b-256 ef7e770a754649de701e8254adcfc414f320a88ea495467666baad61e3aa459e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page