SpKit: Signal Processing toolkit | Nikesh Bajaj |
Project description
Signal Processing toolkit
Links: Github | PyPi - project | _ Installation: pip install spkit
Table of contents
New Updates
New Updates:: Decision Tree View Notebooks
Version: 0.0.7
- Analysing the performance measure of trained tree at different depth - with ONE-TIME Training ONLY
- Optimize the depth of tree
- Shrink the trained tree with optimal depth
- Plot the Learning Curve
- Classification: Compute the probability and counts of label at a leaf for given example sample
- Regression: Compute the standard deviation and number of training samples at a leaf for given example sample
- Version: 0.0.6: Works with catogorical features without converting them into binary vector
- Version: 0.0.5: Toy examples to understand the effect of incresing max_depth of Decision Tree
Installation
Requirement: numpy, matplotlib, scipy.stats, scikit-learn
with pip
pip install spkit
update with pip
pip install spkit --upgrade
Build from the source
Download the repository or clone it with git, after cd in directory build it from source with
python setup.py install
Functions list
Signal Processing Techniques
Information Theory functions for real valued signals
- Entropy : Shannon entropy, Rényi entropy of order α, Collision entropy
- Joint entropy
- Conditional entropy
- Mutual Information
- Cross entropy
- Kullback–Leibler divergence
- Computation of optimal bin size for histogram using FD-rule
- Plot histogram with optimal bin size
Matrix Decomposition
- SVD
- ICA using InfoMax, Extended-InfoMax, FastICA & Picard
Linear Feedback Shift Register
- pylfsr
Continuase Wavelet Transform and other functions comming soon..
Machine Learning models - with visualizations
- Logistic Regression
- Naive Bayes
- Decision Trees
- DeepNet (to be updated)
Examples
Information Theory
View in notebook
import numpy as np
import matplotlib.pyplot as plt
import spkit as sp
x = np.random.rand(10000)
y = np.random.randn(10000)
#Shannan entropy
H_x= sp.entropy(x,alpha=1)
H_y= sp.entropy(y,alpha=1)
#Rényi entropy
Hr_x= sp.entropy(x,alpha=2)
Hr_y= sp.entropy(y,alpha=2)
H_xy= sp.entropy_joint(x,y)
H_x1y= sp.entropy_cond(x,y)
H_y1x= sp.entropy_cond(y,x)
I_xy = sp.mutual_Info(x,y)
H_xy_cross= sp.entropy_cross(x,y)
D_xy= sp.entropy_kld(x,y)
print('Shannan entropy')
print('Entropy of x: H(x) = ',H_x)
print('Entropy of y: H(y) = ',H_y)
print('-')
print('Rényi entropy')
print('Entropy of x: H(x) = ',Hr_x)
print('Entropy of y: H(y) = ',Hr_y)
print('-')
print('Mutual Information I(x,y) = ',I_xy)
print('Joint Entropy H(x,y) = ',H_xy)
print('Conditional Entropy of : H(x|y) = ',H_x1y)
print('Conditional Entropy of : H(y|x) = ',H_y1x)
print('-')
print('Cross Entropy of : H(x,y) = :',H_xy_cross)
print('Kullback–Leibler divergence : Dkl(x,y) = :',D_xy)
plt.figure(figsize=(12,5))
plt.subplot(121)
sp.HistPlot(x,show=False)
plt.subplot(122)
sp.HistPlot(y,show=False)
plt.show()
Independent Component Analysis
View in notebook
from spkit import ICA
from spkit.data import load_data
X,ch_names = load_data.eegSample()
x = X[128*10:128*12,:]
t = np.arange(x.shape[0])/128.0
ica = ICA(n_components=14,method='fastica')
ica.fit(x.T)
s1 = ica.transform(x.T)
ica = ICA(n_components=14,method='infomax')
ica.fit(x.T)
s2 = ica.transform(x.T)
ica = ICA(n_components=14,method='picard')
ica.fit(x.T)
s3 = ica.transform(x.T)
ica = ICA(n_components=14,method='extended-infomax')
ica.fit(x.T)
s4 = ica.transform(x.T)
Machine Learning
Logistic Regression - View in notebook
Naive Bayes - View in notebook
Decision Trees - View in notebook
[source code] | [jupyter-notebooks]
Plottng tree while training
Linear Feedback Shift Register
import numpy as np
from spkit.pylfsr import LFSR
## Example 1 ## 5 bit LFSR with x^5 + x^2 + 1
L = LFSR()
L.info()
L.next()
L.runKCycle(10)
L.runFullCycle()
L.info()
tempseq = L.runKCycle(10000) # generate 10000 bits from current state
Contacts:
PhD Student: Queen Mary University of London
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
spkit-0.0.9.1.tar.gz
(221.6 kB
view details)
Built Distribution
spkit-0.0.9.1-py3-none-any.whl
(217.5 kB
view details)
File details
Details for the file spkit-0.0.9.1.tar.gz
.
File metadata
- Download URL: spkit-0.0.9.1.tar.gz
- Upload date:
- Size: 221.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd7b4be9bfd3c211406d4cd8211241eea97241ecd09c3256b122a75ae361ab81 |
|
MD5 | 5f720c4f451f4eb2effb330dc4a55994 |
|
BLAKE2b-256 | 407837583d4c117ca9710a8555583c5f2b7b1bbf56145a6a8a705dfb95d0e906 |
File details
Details for the file spkit-0.0.9.1-py3-none-any.whl
.
File metadata
- Download URL: spkit-0.0.9.1-py3-none-any.whl
- Upload date:
- Size: 217.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b406bad7f068dc0cd7f2003cae134b97594adfd3d838eae32792e2a8acdbbf65 |
|
MD5 | 71828d921c6784bf2076aea299ee1124 |
|
BLAKE2b-256 | a6028cb40493c369218f5c2d603bcfd2b76c273358d5d29c1dbb75b3e0ee83b9 |